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Abstract. We investigate methods for exploiting nondeterminism in-
herent within the Tile Assembly Model in order to generate uniform
random numbers. Namely, given an integer range {0, . . . , n − 1}, we ex-
hibit methods for randomly selecting a number within that range. We
present three constructions exhibiting a trade-off between space require-
ments and closeness to uniformity.
The first selector selects a random number with probability Θ(1/n) using
O(log2 n) tiles. The second selector takes a user-specified parameter that
guarantees the probabilities are arbitrarily close to uniform, at the cost
of additional space. The third selector selects a random number with
probability exactly 1/n, and uses no more space than the first selector
with high probability, but uses potentially unbounded space.

1 Introduction

The development of DNA tile self-assembly has moved nanotechnology closer to
the goal of engineering useful systems that assemble themselves from molecular
components. Since Seeman’s pioneering work in the 1980s [17], many labora-
tory experiments have shown that DNA tiles can be designed to spontaneously
assemble with one another into desired structures [16]. As physical and mathe-
matical error-suppression techniques improve [3, 6, 11, 18, 20, 23], this molecular
programming of matter will become practical at ever larger scales.

The Tile Assembly Model, developed by Winfree [15, 22], is a mathematical
model of DNA tile self-assembly that enables us to explore the potentialities
and limitations of this kind of molecular programming. The model deliberately
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oversimplifies the physical realities of self-assembly, but Winfree proved that it
is Turing universal [22]. This implies that self-assembly can be algorithmically
directed. The simplicity of the Tile Assembly Model allows us to focus on the
interactions between computation and geometry that are characteristic of algo-
rithmic self-assembly [1, 2, 4, 9, 10, 12–15,19].

One prominent feature of self-assembly is its inherent nondeterminism, and
the Tile Assembly Model represents this well. At any given time, there may be
many locations where a tile might attach itself to the growing assembly, and,
even at a single location, there may be more than one type of tile that can attach
itself. When we are designing a tile assembly system that is supposed to result
in a specified terminal assembly, regardless of the particular sequence in which
tiles attach themselves, this nondeterminism is a conceptual difficulty that we
overcome with tools like local determinism [19] and modularity [9]. In other sit-
uations, such as when we are using randomized algorithms to reduce the number
of tile types required for a self-assembly [5,7] or when we are simulating a system
that is itself nondeterministic, the Tile Assembly Model’s nondeterminism is a
programming resource.

This paper concerns the problem of using the nondeterminism inherent in self-
assembly to implement a nondeterministic choice among an arbitrary number of
options. That is, we consider the problem of designing a tile assembly system
that, given a positive integer n, chooses an integer r ∈ {0, . . . , n− 1}.

As stated so far, this problem is not interesting. We simply count down from
n−1 to 0, tossing a “coin” (implemented by having either one of two tiles attach
at a suitable location) after each decrement to decide whether to stop or keep
counting down. This solves the logical problem of nondeterministic choice, but,
if n is large and the “coins” are fair and independent, it is nearly certain that
r will be much larger than 0. This is not satisfactory if we want to use the
nondeterministic choice for a randomized algorithm or a useful simulation.

So our actual problem treats nondeterminism probabilistically. We assume
that, at each time and location in self-assembly, all the tile types than can at-
tach at that location are equally likely to do so, and that the “choices” made
at different locations are independent. We then seek to design a tile assembly
system that, given a positive integer n (represented in binary as a seed assem-
bly), chooses an integer r ∈ {0, . . . , n − 1} in such a way that the outcomes
r = 0, r = 1, . . . , r = n− 1 are all equally likely, or nearly so. (We are not con-
structing pseudorandom generators in the sense of complexity theory or cryp-
tography. Pseudorandom generators expand a short, truly random “seed” into a
longer pseudorandom string. Our random number selectors use at least as much
randomness as they produce.)

We present three solutions to this problem. Our first random number selector
has 324 tile types and uses only O(log2 n) space to select the number r, but the
probabilities are only Θ(uniform), in the sense that the probability that r is
selected is between 1

2n
and 2

n
.

Our second random number selector has 821 tile types and takes as input
both n and a user-supplied precision parameter t. The probability that it selects
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r is then between 1
n
− 1

t
and 1

n
+ 1

t
. This is very nearly uniform if t≫ n, but this

added uniformity comes at a price, namely that the selector uses O(t2) space.

Our third selector has 100 tile types and selects r with probability exactly 1
n
.

With high probability it uses only as much space as our first selector, but there
is no absolute bound on the space that it takes. (This selector is a self-assembly
implementation of von Neumann’s rejection method [8, 21].)

We expect each of these random number selectors to be useful in some self-
assemblies. Taken together, our selectors suggest that there is a tradeoff between
how uniform a random number selector is and how much space it takes. We con-
jecture that this tradeoff is real, and not merely an artifact of our constructions.
Proving or disproving this conjecture is an open problem.

2 The Tile Assembly Model

This section provides a very brief overview of the TAM. See [10, 14, 15, 22] for
other developments of the model. Our notation is that of [10]. We work in the
2-dimensional discrete space Z

2. We write U2 for the set of all unit vectors, i.e.,
vectors of length 1 in Z

2.

Intuitively, a tile type t is a unit square that can be translated, but not
rotated, having a well-defined “side u” for each u ∈ U2. Each side u of t has a
“glue” of “color” colt(u) - a string over some fixed alphabet Σ - and “strength”
strt(u) - a natural number - specified by its type t. Two tiles t and t′ that are
placed at the points a and a + u respectively, bind with strength strt (u) if and
only if (colt (u) , strt (u)) = (colt′ (−u) , strt′ (−u)).

Given a set T of tile types, an assembly is a partial function α : Z
2

99K T , with
locations are which α is undefined interpreted to mean empty space. An assembly
is τ -stable, where τ ∈ N, if it cannot be broken up into smaller assemblies without
breaking bonds whose strengths sum to at least τ .

Self-assembly begins with a seed assembly σ : Z
2

99K T and proceeds asyn-
chronously and nondeterministically, with tiles adsorbing one at a time to the
existing assembly in any manner that preserves stability at all times. A tile as-

sembly system (TAS) is an ordered triple T = (T, σ, τ), where T is a finite set
of tile types, σ is a seed assembly with finite domain, and τ is the temperature.
Note that for all TAS’s in this paper, τ = 2. An assembly sequence in a TAS
T = (T, σ, τ) is a (possibly infinite) sequence α = (αi | 0 ≤ i < k) of assemblies
in which α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition
of a single tile.

A

Fig. 1: Example tile
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Throughout this paper, tiles are depicted as squares whose various sides
either contain zero, one or two “notches,” indicating whether the glue strengths
on these sides are 0, 1, or 2, respectively. Thus, for example, a tile of the type
shown in Figure 1 has glue of strength 0 on the left and bottom, a glue of strength
2 on the right and finally a glue of strength 1 on the top.

This tile also has a label ‘A’, which plays no formal role but may aid our
understanding and discussion of the construction. We intentionally omit glue
labels in all of our figures.

3 A Θ(uniform) Selector

The first selector that we implement chooses a number at random between s ∈ N

(“start”) and e ∈ Z
+ (“end”), where s < e and both are encoded in binary in

the seed as shown in the bottom row of Figure 2.

The construction is shown in Figure 2. The tile set implements the random
binary search algorithm Selector. It is written such that each numbered line
corresponds exactly to a row in Figure 2. The identifier ¢, wherever it appears,
indicates the result of a fair coin flip, with result H or T . Each evaluation of ¢
is independent of the others.

Selector({s, . . . , e})

1 s′ ← s + 1
2 while s′ < e

3 do sum← s + e

4 mid← sum >> 1 � divide sum by 2 by bit shifting
5 if ¢ = H

then s← mid + 1 � choose right subinterval
else e← mid � choose left subinterval

6 s′ ← s + 1
7 if ¢ = H then return s else return e

Figure 2 depicts a selector that randomly chooses an integer between s and e,
such that, letting n = |{s, . . . , e}|, we have 1

2
· 1

n
≤ Pr(a) ≤ 2 · 1

n
for each a ∈

{s, . . . , e}. The bottom row encodes s and e in binary. Note that the direction of
growth can be inferred from the binding strengths. Each gray row is a comparison
row whose result indicates whether the binary search is complete. The rows
between each adjacent pair of gray rows implement the main loop of the random
binary search. The interval {s, . . . , e} is subdivided into two subintervals, with
the left subinterval always chosen to be one larger if {s, . . . , e} has an odd number
of elements. One of the subintervals is randomly chosen to become the new
interval, by replacing either s or e with a value near their midpoint. When
{s, . . . , e} has either 1 or 2 elements, the loop terminates, and one of s or e is
randomly chosen.
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Theorem 1. For all n ∈ N and r ∈ {1, . . . , n},

1

2n
≤

1

2⌊log2
n⌋+1

≤ Pr[Selector(1, n) = r] ≤
1

2⌊log2
n⌋

<
2

n

Proof. Let 2i−1 < n ≤ 2i, i ∈ N. Immediately after k coin flips we are working
within one of 2k subintervals of [1, n] that are non-overlapping and cover all
of [1, n]. The leftmost subinterval, denoted [1, nk], has maximal size (number of
elements) out of the 2k sub-intervals, which can be shown by the following simple
inductive argument. For k = 1, we have two sub-intervals and the leftmost is
maximal since

⌊

1 + n

2

⌋

≥ n−

⌊

1 + n

2

⌋

. (1)

If we assume that the leftmost interval [1, nk] is maximal at flip k, then by letting
n = nk in the inequality (1), the leftmost interval is maximal at flip k + 1.

So a maximal length sequence of coin flips, over all such valid sequences, is
given by a sequence of 1’s (we choose the left sub-interval at each coin flip). We
next show that this maximal number of coin flips is no more than ⌊log2 n⌋+ 1.
The leftmost interval [1, nk] has size

nk =

⌊

1 + nk−1

2

⌋

=
⌈nk−1

2

⌉

(2)

=

{

nk−1

2
nk−1 even

nk−1+1

2
nk−1 odd

(3)

Assuming that nk is odd for all k (to give an upperbound on the number of
flips), we have n⌊log n⌋+1 = 1. This gives

1

2⌊log2
n⌋+1

≤ Pr[Selector(1, n) = r].

Similarly, using (1), it can be shown that at flip k, the rightmost subinterval
is of minimal size over all 2k possible subintervals. A lowerbound of log2 n on
the number of flips is found when nk is even for all k in (3), and this lowerbound
is reached when n = 2i, i ∈ N. Thus

Pr[Selector(1, n) = r] ≤
1

2⌊log2
n⌋

.

Unfortunately,the bounds of Theorem 1 are tight, in the sense that for certain
n and r ∈ {0, . . . , n−1}, Pr[r] can be nearly twice or half of 1

n
. The asymmetry of

the interval sizes is what prevents the tile set from achieving perfect uniformity.
Intuitively, if the left subinterval has length l and the right has length l + 1,
then we should pick the right with probability l+1

2l+1
, as opposed to 1

2
as our

algorithm does. It may seem at first glance that by randomly selecting which
interval is larger, we could smooth out the probabilities and approach a uniform
distribution in the limit as the interval size approaches infinity.
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Input row

Compute
1s = s +’

Compute
1s = s +’

mid = sum >> 1

Randomly set:
1 {Pr ½}s = mid +

e = mid {Pr ½}

If < , thens e

sum = s + e

’

Compare
tos e’

Compare
tos e’

Compare
tos e’

Randomly
pick ors e

Repeat until
s e’≥

Fig. 2: Θ(uniform) selector

However, this does not work. Roughly speaking, selecting r from {0, . . . , n−1}

using this method, we can express Pr[r] =
∏≈log n

i=1 pi, where each pi represents
the probability that r is in the subinterval picked during the ith stage. If n is
a power of 2, then each pi will be 1

2
, and the selector (both that just described

and the selector constructed earlier in this section) will select r with probability
exactly 1

n
. If n is not a power of 2, then at most one of the pi’s will be unequal

to 1
2
; this will occur precisely at the stage when the interval length is odd and

r is the middle element, which can happen at most once in the course of the
algorithm. In the case of r = 1 or r = n − 2, when this occurs, the interval
will have length 3, so pi will be equal to 1

2
, when in fact it ought to be 2

3
to
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achieve uniformity. Therefore, no matter how large n is, r = 1 will be selected
with probability a constant factor away from uniform.

In the next section we introduce a random selector that allows the user to
control the desired closeness to uniformity as a parameter, trading off space for
error in approximating uniformity.

4 A Controllable-Error Selector

In this section, we implement the self-assembly version of a random number
generator whose deviation from uniform can be controlled by a user-specified
parameter. More precisely, given an upper bound n ∈ N, and a precision param-
eter t ∈ N, the tile system generates a random number r ∈ {0, . . . n − 1} with
probability approaching 1

n
as t→∞. We first outline the algorithm.

The following algorithm is one of the more intuitive methods of generating
a random number from an arbitrary range, using flips of an unbiased coin, al-
though the number is not generated with perfect uniformity. MSB stands for
most significant bit, and LSB stands for least significant bit.

Controllable-Selector(n,t)

1 Uniformly at random choose m ∈ {0, . . . , t− 1}
2 return Mod (m, n)

Mod(m,n)

� compute m mod n in binary
1 Line up MSBs of m and n by shifting n to the left

sm← the integer represented by the ⌊log n⌋+ 1 MSBs of m (“small m”)
2 while n’s LSB lies to the left of m’s LSB

do if sm ≥ n

3 then sm← sm− n

concatenate the bit of m to the right of n’s LSB to the end of sm

4 shift n one bit to the right relative to sm and m

5 if sm ≥ n

6 then sm← sm− n

7 return sm

As before, we have generally numbered the lines corresponding to rows in
the tile assembly. However, in this case, lines 2 and 4 are implemented in the
same row, since it is possible to shift n to the right by one bit and simultaneously
compare it to sm. This occurs on all comparisons except for the first check of the
loop condition, immediately after n has been shifted left to line it up with the
MSB of m. Also, line 3 represents the row that subtracts sm− n if sm ≥ n, or
simply copies sm otherwise, although the copying does not appear as an explicit
line in the pseudocode. Finally, line 1 is actually implemented as a series of rows
as shown in Figure 4, but we express it as a single instruction in the pseudocode.
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Our construction takes as inputs two positive integers, n and t′, which we
encode in a seed row. Choosing t′ so that t = 24t

′−1 means that the construction
executes the procedure Controllable-Selector(n,t).1 The construction first
grows a number of rows upward, each having a width one greater than the
previous, until a row having a width of exactly 4t′−1 is formed. Finally, the top
most row assembles in which, at each location, one of exactly two tile types is
randomly selected to bind. This effectively generates a random number m in the

set
{

0, . . . 24t
′−1 − 1

}

with a uniform distribution. Then, the subsequent rows to

attach implement step 2 in Controllable-Selector. The resulting modulus
is encoded in the top most row of the construction and is the number r.

We now present a more detailed discussion of this construction. The tile
assembly system can be thought of as assembling in three logical stages.

First Stage: In the initial stage, our goal is to take as input n and t′, and (uni-

formly) produce a random number, say m, in the range
{

0, . . . 24t
′−1 − 1

}

.

We will then feed the numbers m and n to the second stage of the construc-
tion. Our input is encoded in a seed row whose length k is the greater of
⌊log n⌋+1 and ⌊log t′⌋+1. The seed row is the bottom most row in Figure 3.

1,0

0,0

0,0

0/1
0

0,0

1,1

1,1

0/1
1

0/1
0

0/1
0

0/1
0

0,1

0,0

0,0

0/1
0

0/1
0

0/1
0

0,0

0,1

0,1

0/1
1

0/1
0

0/1
0

0,1

1,10,00,1A

A

A

A

A

A

A

D

B

B

B

B

B

t n

If so, randomly
generate 4 - 1 bitst

Is 0?t =

Seed row

Is 0?t =

Decrement the bits
of by 1t

Repeat until t = 0

“Filler” tiles

Fig. 3: The first stage of the construction.

1. On top of the seed row, we use a (zig-zagging) Rothemund-Winfree bi-
nary subtractor [15] that counts down from t′ while “blindly” passing

1 If t 6= 24t
′−1 for some t′ ∈ N, choose t′ so that t ≤ 24t

′−1. This achieves the bound
on the probability that we derive for t, while using asymptotically the same amount
of space.
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the value of n up through the subsequent rows. This gives us a k by
2t′ + 1 rectangle.

2. We use filler tiles (labeled ‘A’, ‘B’ and “Filler” tiles in Figure 3) to self-
assemble a right-triangle to the left of the rectangle that was built in the
previous step.

3. (line 1 of the pseudocode for Controllable-Selector) The top most
row of the construction is 4t′− 1 tiles long and self-assembles from right
to left such that, for each of the 4t′ − 1 locations in the row, there are
two possible tile types that can attach - one tile representing a 0 and
the other a 1. The choice of each tile that attaches in this row can be
made independently of its predecessor (i.e., the tile immediately to its
right). This results in the generation of a random number m in the range
{

0, . . . 24t
′−1 − 1

}

with uniform distribution.

The top of the last row of the initial stage of the construction encodes (as
output) the number n (the “lower” bits in each tile), along with the number
m (the randomly chosen “upper” bits in each tile). Note that we allow leading
zeros in both m and n.

Second Stage: (Line 1 of the pseudocode for Mod) The second stage of the
construction takes as input m and n (output from the previous stage), and
shifts (all of the bits of) n to the left so that the most significant 1 of n lines
up with the MSB of m.

1. Every other row (starting with the first row) in this stage of the con-
struction sends a “request-a-shift” signal from left-to-right only if the
most significant 1 of n does not line up with the MSB of m. For exam-
ple, the second (from the bottom most) row in Figure 4 self-assembles
left-to-right and carries the first request-a-shift signal.

2. On top of each row that carries a request-a-shift signal, a row self-
assembles right-to-left in which each bit of n is shifted once to the left.
The third (from the bottom most) row in Figure 4 is the first row that
carries out a shift operation. For shift rows, as self-assembly proceeds
right-to-left, the position of the most significant 1 of n is compared with
the MSB of m, and if they line up, then a subsequent request-a-shift
signal is not sent. It is at this point that the third, and final stage of the
construction is carried out.

Third Stage: The third stage of the construction performs the task of calcu-
lating m mod n (step 2 in Controllable-Selector) and then (as a final
step) self-assembles a row which represents only that value as the final out-
put of the construction. The third stage begins with a row of tiles which
encode the values of m and n such that the most significant 1 of n lines up
with the MSB of m. Throughout this discussion, “small m” will refer to the
bits of m that begin with the leftmost and continue right to the location of
the rightmost bit of n in that row (these positions are represented by the
dark colored tiles in Figure 5). The third stage proceeds as follows.
1. (line 2 of the pseudocode for Mod) Self-assemble a row from left-to-right

which performs an initial comparison of the values of “small m” and n.
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Randomly chosen bits
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If yes, then do another
shift

Can the bits of    be
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n

“Request” the bits of    be
shifted once to the left

n

Continue shifting the bits of    to the left
until the MSB of    is in the leftmost column

n

n

Fig. 4: The second stage of the construction.

2. (line 3 of the pseudocode for Mod) Self-assemble the next row from
right to left which performs one of the following functions based on the
comparison from the previous step.

(a) If n > “small m,” send a signal requesting that (all of the bits of) n

be shifted one position to the right.
(b) Else, subtract the value of n from “small m” request to shift n. Note

that this will result in a new value of “small m.”

3. (line 4 of the pseudocode for Mod) Now the construction self-assembles
a row from left-to-right which shifts the value of n one position to the
right (shifting 0 bits in from the left) and keeping the current value
of “small m” in the same position. Note that this row also performs a
comparison against the newly shifted value of n and the current value of
“small m.” The latter will now extend one bit further to the right than
it previously did.

4. (lines 2 and 4 of the pseudocode for Mod) The construction continues
the self-assembly of rows which perform the previous two steps in a loop
until the value of n has shifted far enough to the right so that its LSB
is aligned with that of m.

5. (line 6 of the pseudocode for Mod) Only if the last comparison resulted
in n < “small m,” the construction self-assembles the necessary rows to
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Fig. 5: The third stage of the construction The “direction” of self-assembly for each
row is either right-to-left or left-to-right (as noted in parentheses).

do one more subtraction of n from “small m,” and a final comparison
(as done above).

6. (line 7 of the pseudocode for Mod) The remaining value of “small m”
now represents the result of m mod n. The final step in the third stage of
the construction self-assembles a row from right-to-left which represents
only that remainder, and thus the final output, r ∈ {0, . . . , n− 1}.

Theorem 2. For all n ∈ N, and r ∈ {0, . . . , n− 1},

lim
t→∞

Pr [Controllable-Selector(n, t) = r] =
1

n

Proof. Fix t ∈ N. Note that, by a trivial counting argument, there are either
⌊

t

n

⌋

or
⌈

t

n

⌉

ways to choose a number congruent to r (modulo n) from the set
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{0, . . . , t− 1}, whence

Pr [Controllable-Selector(n, t) = r] ≤

⌈

t

n

⌉

t

≤
t

n
+ 1

t

=
1

n
+

1

t
.

Similarly, we have

Pr [Controllable-Selector(n, t) = r] ≥
1

n
−

1

t
.

It follows, by the Squeeze theorem, that

lim
t→∞

Pr [Controllable-Selector(n, t) = r] =
1

n
.

5 An Exactly Uniform Selector

Even though the selector of Section 4 asymptotically approaches a uniform dis-
tribution as the precision parameter t grows to infinity, for certain n it deviates
slightly from uniform.

In this section we outline a construction of a random number selector with
the property that it selects a random number in the range {0, . . . , n − 1} with
probability exactly 1

n
. The catch is that while the selector has a very low expected

number of tiles that need to be used, with some small probability, an unbounded
number of tiles could be required, making this selector unsuitable for applications
in which space constraints must absolutely be enforced.

The construction is shown in Figure 6. The tile set implements the following
algorithm. The random element r is generated by selecting t bits uniformly and
independently at random, where t is the length of the binary expansion of n.

Uniform-Selector(n)

1 r← random element of {0, 1, . . . , 2⌊log n⌋+1 − 1}
2 while r ≥ n

3 do r ← random element of {0, 1, . . . , 2⌊log n⌋+1 − 1}
4 return r

The selector chooses r between 0 and the next power of 2 above n and outputs
r if r < n. The selector will use a small number of rows with high probability,
but may potentially use an unbounded number of rows.

Since the element of
{

0, 1, . . . , 2⌊log n⌋+1 − 1
}

is selected with uniform proba-
bility, then conditioned on that element being less than n, the probability of each
element r ∈ {0, . . . , n− 1} is equal, i.e., 1

n
. Furthermore, since the next power of

two greater than n is at most 2n, the probability that r ≥ n is at most 1
2
, whence
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Input row: n

Fig. 6: The uniform selector

the expected number of iterations i is a geometric random variable with expected
value at most 2, subject to the tail bound, for all k ∈ N, Pr[i > k] ≤ 2−k.

Since two rows are used per iteration, so allowing, for instance, 100 rows
(plus the two for the seed and final row) ensures that sufficient room will exist
to generate r with probability at least 1− 2−50.

6 Conclusion

We have introduced random number selectors in the Tile Assembly Model, pow-
ered by the randomness inherent in nondeterministic tile sets. They allow for
a more algorithmic control of randomness than by hard-coding probabilities by
fixed tile concentrations.

The third selector is not entirely unlike the procedure used to generate ran-
dom integers from random bits used in many standard libraries; for instance,
the method Random.nextInt in the Java standard library. Why then have we
bothered to describe the first two selectors, which are provably different from
uniform? In a programming language, a “ZPP” algorithm that almost certainly
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takes a small amount of time, but may rarely use more time, is not a problem
except perhaps in critical real-time systems. However, in a tile assembly system,
consisting of possibly billions of tiles, the presence of even a single region that
uses too much space will destroy the correctness of the entire assembly. In such
situations, it may be preferable to guarantee that space bounds are adhered to
at the cost of a slight deviation from uniformity.
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