
Self-Assembly of Decidable Sets (extended
abstract)⋆

Matthew J. Patitz, and Scott M. Summers⋆⋆

Department of Computer Science
Iowa State University

Ames, IA 50011, U.S.A.
{mpatitz,summers}@cs.iastate.edu

Abstract. The theme of this paper is computation in Winfree’s Ab-
stract Tile Assembly Model (TAM). We first review a simple, well-known
tile assembly system (the “wedge construction”) that is capable of uni-
versal computation. We then extend the wedge construction to prove
the following result: if a set of natural numbers is decidable, then it and
its complement’s canonical two-dimensional representation self-assemble.
This leads to a novel characterization of decidable sets of natural num-
bers in terms of self-assembly. Finally, we prove that our construction is,
in some “natural” sense, optimal with respect to the amount of space it
uses.

1 Introduction

In his 1998 Ph.D. thesis, Erik Winfree [9] introduced the (abstract) Tile As-
sembly Model (TAM) - a mathematical model of laboratory-based nanoscale
self-assembly. The TAM is also an extension of Wang tiling [7, 8]. In the TAM,
molecules are represented by un-rotatable, but translatable two-dimensional
square “tiles,” each side of which having a particular glue “color” and “strength”
associated with it. Two tiles that are placed next to each other interact if the
glue colors on their abutting sides match, and they bind if the strength on their
abutting sides matches, and is at least a certain “temperature.” Extensive refine-
ments of the TAM were given by Rothemund and Winfree in [5, 4], and Lathrop
et. al. [3] gave an elegant treatment of the model that does not discriminate
against the self-assembly of infinite structures.

In this paper, we explore the notion of computation in the TAM - what is it,
and how is it accomplished? Despite its deliberate over-simplification, the TAM
is a computationally expressive model. For instance, Winfree proved [9] that
in two or more spatial dimensions, the TAM is equivalent to Turing-universal
computation. In other words, it is possible to construct, for any Turing machine

⋆ This research was supported in part by National Science Foundation Grants 0652569
and 0728806

⋆⋆ This author’s research was supported in part by NSF-IGERT Training Project in
Computational Molecular Biology Grant number DGE-0504304

M and any input string w, a finite assembly system (i.e., finite set of tile types)
that tiles the first quadrant, and encodes the set of all configurations that M

goes through when processing the input string w. This implies that the process
of self-assembly can (1) be directed algorithmically, and (2) be used to evaluate
computable functions.

One can also regard the process of self-assembly itself as computation that,
takes as input some initial configuration of tiles, and produces output in the form
of some particular connected shape, and nothing else (i.e., strict self-assembly
[3]). The self-assembly of shapes, and their associated Kolmogorov (shape) com-
plexity, was studied extensively by Soloveichik and Winfree in [6], where they
proved the counter-intuitive fact that, sometimes fewer tile types are required
to self-assemble a “scaled-up” version of a particular shape as opposed to the
actual shape.

Another flavor of computation in the TAM is the self-assembly of a language
A ⊆ N. Of course, one must make some additional assumptions about the self-
assembly of A, since A is one-dimensional, and not necessarily connected. In
this case, it only makes sense to talk about the weak self-assembly [3] of A.
We say that A weakly self-assembles if “black” tiles are placed on, and only
on, the points that are in A. One can also view weak self-assembly as painting
a picture of the set A onto a much larger canvas of tiles. It is clear that if A

weakly self-assembles, then A is necessarily computably enumerable. Moreover,
Lathrop et. al. [2] discovered that the converse of the previous statement holds
in the following sense. If the set A is computably enumerable, then a “simple”
representation of A as points along the x-axis weakly self-assembles.

In this paper, we continue the work of Lathrop et. al. [2]. Specifically, we
focus our attention on the self-assembly of decidable sets in the TAM. We first
reproduce Winfree’s proof of the universality of the TAM [9] in the form of a
simple construction called the “wedge construction.” The wedge construction
self-assembles the computation history of an arbitrary TM M on input w in
the space to the right of the y-axis, above the x-axis, and above the line y =
x−|w|−2. Our first main result follows from a straight-forward extension of the
wedge construction, and gives a new characterization of decidable languages of
natural numbers in terms of self-assembly. We prove that a set A ⊆ N is decidable
if and only if A × {0} and Ac × {0} weakly self-assemble. Technically speaking,
our characterization is (exactly) the first main theorem from Lathrop et. al. [2]
with “computably enumerable” replaced by “decidable,” and f(n) = n. Finally,
we establish that, if A ⊆ N is a decidable set having sufficient space complexity,
then it is impossible to “naturally” self-assemble the set A×{0} without placing
tiles in more than one quadrant.

2 The Tile Assembly Model

We now give a brief intuitive sketch of the abstract TAM. See [9, 5, 4, 3] for
other developments of the model. We work in the 2-dimensional discrete Eu-

clidean space. We write U2 = {(0, 1), (1, 0), (0,−1), (−1, 0)}. We refer to the first
quadrant N

2 as Q1, the second quadrant as Q2, etc..

Intuitively, a tile type t is a unit square that can be translated, but not
rotated, having a well-defined “side u” for each u ∈ U2. Each side u of t has a
“glue” of “color” colt(u) - a string over some fixed alphabet Σ - and “strength”
strt(u) - a natural number - specified by its type t. Two tiles t and t′ that are
placed at the points a and a + u respectively, bind with strength strt (u) if and
only if (colt (u) , strt (u)) = (colt′ (−u) , strt′ (−u)).

Given a set T of tile types, an assembly is a partial function α : Z
2 99K T .

An assembly is stable if it cannot be broken up into smaller assemblies without
breaking bonds of total strength at least τ = 2. If α is an assembly, and X ⊆ Z

2,
then we write the restriction of α to X as α ↾ X .

Self-assembly begins with a seed assembly σ and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing assembly
in any manner that preserves stability at all times. A tile assembly system (TAS)
is an ordered triple T = (T, σ, τ), where T is a finite set of tile types, σ is a seed
assembly with finite domain, and τ = 2 is the temperature. An assembly α is
terminal, and we write α ∈ A�[T], if no tile can be stably added to it. A TAS T
is directed, or produces a unique assembly, if it has exactly one terminal assembly.

A set X ⊆ Z
2 weakly self-assembles [3] if there exist a TAS T = (T, σ, τ) and

a set B ⊆ T such that α−1(B) = X holds for every terminal assembly α. That
is, there is a set B of “black” tile types such that every terminal assembly has
black tiles on points in the set X and only X .

An assembly sequence in a TAS T = (T, σ, τ) is an infinite sequence α =
(α0, α1, α2, . . .) of assemblies in which α0 = σ and each αi+1 is obtained from
αi by the “τ -stable” addition of a single tile. We define the result of an as-
sembly sequence α to be the unique assembly α = res(α) satisfying dom α =
⋃

0≤i<k dom αi, where k ∈ Z
+ ∪ {∞}. The precedence graph [1] Gα of α, with

α = res(α), is defined as the directed graph G = (dom α, E), where (u, v) ∈ E

if and only if (1) α (u) and α (v) interact, and (2) α assigns a tile to u before it
assigns a tile to v.

To prove that a particular TAS T = (T, σ, τ) is directed, it suffices to exhibit
a locally deterministic [6] assembly sequence in T . To save space here, we refer
the reader to [6] for a detailed discussion of local determinism.

3 The Wedge Construction

In this section, we review the “wedge construction” - a simple, well-known TAS
that simulates an arbitrary Turing machine on some binary string in the first
quadrant of the discrete Euclidean plane. We will later use the wedge construc-
tion to prove our main result.

Construction 1 (wedge construction) Let M = (Q, Σ, Γ, δ, q0, qA, qR) be a
standard TM, x ∈ {0, 1}∗, and define the TAS TM(x) =

(

TM(x), σ, τ
)

, where

TM(x) is the set of tile types defined in section 3.1, σ is the seed assembly sat-
isfying dom σ = ({0, . . . , |x| − 1} × {0}) that encodes the initial configuration of
M , and τ = 2.

3.1 Tile Types for Construction 1

We construct the set of tile types TM(x) as follows.

1. For all x ∈ Γ , add the seed row tile types:

Leftmost Interior Rightmost
q x0

>q x0

x

>x>

-*

->

2. For all x ∈ Γ , add the tile types:

Left of tape head Right of tape head

x

x

<x<

x

x

>x>

3. Add the following two tile types that grow the tape to the right:

2nd rightmost tape cell Rightmost tape cell

-*

-

-*->

-*

--*

4. For all p, q ∈ Q, and all a, b, c ∈ Γ satisfying (q, b, R) = δ(p, a) and q 6∈
{qA, qR} (i.e. for each transition moving the tape head to the right into a
non-accepting state), add the tile types:

Tape cell with output Cell that receives tape
value after transition head after transition

pa

b

pab<

c

qc

>qcpa

5. For all p, q ∈ Q, and all a, b, c ∈ Γ satisfying (q, b, L) = δ(p, a) and q 6∈
{qA, qR} (i.e. for each transition moving the tape head to the left into a
non-accepting state), add the tile types:

Tape cell with output Cell that receives tape
value after transition head after transition

pa

b

>bpa

c

qc

paqc<

6. For all p ∈ Q, a, b ∈ Γ , and all h ∈ {ACCEPT, REJECT} satisfying δ(q, b) ∈
{qA, qR} × Γ × {L, R} (i.e. for each transition moving the tape head into a
halting state), add the tile types:

b

h

>qbpa

b

h

paqb<

3.2 Proof of Correctness

Lemma 1. If M is a standard TM, and x ∈ {0, 1}∗, then the TAS TM(x) is
locally deterministic.

Proof (Proof sketch). It is straightforward to define an assembly sequence α,
leading to a terminal assembly α = res(α), in which (1) the jth configuration
Cj of M is encoded in the row Rj = ({0, . . . , |x| − 1 + j} × {j}), and (2) α

self-assembles Ci in its entirety before Cj if i < j. It follows easily from Con-
struction 1 that every tile that binds in α does so deterministically, and with
exactly strength 2, whence TM(x) is locally deterministic.

4 A New Characterization of Decidable Languages

We now turn our attention to the self-assembly of decidable sets of positive
integers in the TAM. We will modify the wedge construction from the previous
section in order to prove that, for every decidable set A ⊆ N, there exists a
directed TAS TA×{0} = (TA×{0}, σ, τ) in which A×{0} and Ac×{0} weakly self-
assemble. Throughout our discussion, we assume that M = (Q, Σ, Γ, δ, q0, qA, qR)
is a standard, total TM having ‘-’ as its blank symbol, and satisfying L(M) = A.
Our proof relies on the simple observation that, for every input w ∈ N, there
exists a t ∈ N such that M halts on w after t steps. This means that we can
essentially stack wedge constructions one on top of the other. Intuitively, our
main construction is the “self-assembly version” of the following enumerator.

while 0 ≤ n < ∞ do
simulate M on the binary representation of n

if M accepts then
output 1

else
output 0

end if
n := n + 1

end while

Just as the above enumerator prints the characteristic sequence of A, our con-
struction will self-assemble the characteristic sequence of A along the positive
x-axis.

4.1 Rigorous Construction of TA×{0}

In this section we present a full definition of the tile set TA×{0}, and in the
next section we provide a higher level description of the behavior of our tile set.
Note that in both sections we will be discussing a version of TA×{0} in which
the simulations of M proceed from the bottom up since it is often more natural
to think about this particular orientation. However, to be technically consistent
we ultimately rotate all of the tile types in TA×{0} by 270 degrees, and then
assign the seed tile to the location (−1, 0). The full construction is implemented
in C++, and is available at the following URL: http://www.cs.iastate.edu/

~lnsa.
In our construction, we use the following sets of strings (where ‘∗’ and ‘-’

simply represent the literal characters).

C = {M0∗L, M1, M1∗L, M1∗, 0∗L, 1L, 0, 0∗, 1, -, -∗}
C[no blank] = {M0∗L, M1, M1∗L, M1∗, 0∗L, 1L, 0, 0∗, 1}

C[∗] = {M0∗L, M1∗L, M1∗, 0∗L, 0∗}
C[no ∗] = C[no blank] − C[∗]

M = {x ∈ C | M ⊑ x}
N = C[no blank] − M

Intuitively, the set C contains the glue colors that appear on the north and south
edges of some set of tile types that self-assembles a log-width binary counter
(i.e., a binary counter that counts from 1 to infinity, and the width of each row
is proportional to the log of the number it represents). We will embed these
strings, and hence the behavior of a binary counter, into the tile types of the
wedge construction. We will do so as follows.

Let T be the set of tile types given in Construction 1 that are not in groups
(1) or (3). For each tile type t ∈ T , c ∈ C, and u ∈ U2, define the tile type tc
such that

tc(u) =

{

(colt (u) , strt (u)) if u ∈ {(1, 0), (−1, 0)}
(colt (u) ◦ (c), strt (u)) otherwise,

Note that “colt (u) ◦ (c)” means concatenate the string c, surrounded by paren-
theses, to the end of the string colt (u). The set { tc | t ∈ T and c ∈ C} makes
up part of the tile set TA×{0}, and we define the remaining tile types as follows.

1. The following are seed tile types.

SOLN

~(M0*L)

SESEED

PRESOLN

~(-*)

DIAGSESE

2. The following are the tile types for the initial configuration of M on some
input.
(a) Tile types that store the location of the tape head. For all m ∈ M , and

all b ∈ {0, 1},

i. If there exists h ∈ {qA, qR} such that δ(q0, b) ∈ {h} × Γ × {L, R},
If h = qA, add: If h = qR, add:

~()m

ACCEPT

>q b0

~()m

REJECT

>q b0

ii. If δ(q0, b) 6∈ {qA, qR}×Γ ×{L, R}, then add the following tile types:

~()m

q b m0 ()

>q b0

(b) Tile types that represent the tape contents to the right of the tape head.
For all n ∈ N ∪ {-}, and all a ∈ Γ , add the following tile types:

~()n

a n()

>a>

3. Halting row tile types. For all h ∈ {ACCEPT, REJECT}, add the following
tile types:
(a) The following tile types initiate the halting signal. For all u ∈ C[no blank],

If u ∈ C[∗], add: If u ∈ C[no ∗], add:

h u()

u

hh u()CTR

h u()

u

hh u()CTR

(b) The following tile types propagate the halting signal to the right edge.
For all u ∈ C[no blank], and for all a ∈ Γ ,

If u ∈ C[∗], add: If u ∈ C[no ∗], add:

a u()

u

hh u()h

a u()

u

hh u()h

4. These are also halting row tile types, and fill in the space to the left of the
initial halting tile. For all u ∈ C[no blank], add the following tile types:

If u ∈ C[∗], add: If u ∈ C[no ∗], add:

a u()

u

CTRCTR()uCTR

a u()

u

CTRCTR()uCTR

5. These are the tile types that perform counter increment operations.

M1 0 1 0* 1

M1* 1L 0 0 1

M0*L M1*L 0*L M1

~(M1) ~(0) ~(0) ~(1) ~(1)

~(0) ~(0*L) ~(0*) ~(0) ~(1)

~(M1*L) ~(0*L) ~(M1) ~(1L) ~(M1*)

c * * * c*

* >> c* c c

>> >> M >> c*

M1 0 0 1 1

0 0*L 0* 0 1

M1*
L

0*L M1 1L M1*

* * c c*

M * c c c

M c*

6. The following tile types propagate blank tape cells to the north

~(-*)

-(-)

-*-*>

-

-(-)

-*

~(-*)

END->>

7. The following tile types self-assemble a one-tile-wide path from the halting
configuration to some location on the positive x-axis. For all h ∈ {ACCEPT, REJECT},
add the following tile types:

PRESOLN DIAGh PRESOLN

h h! h!

h! h

-* h

PRESOLN DIAGh

h h h!- -*

h h DIAG

END END
END

@

h h

h! END

h h h

h h h

h h

h-* h

h DIAG h

END
END

@ h

END
@

END

h h!

8. The following are solution tiles. For all h ∈ {ACCEPT, REJECT}, add the
tile types:

SOLN

SOLN

hh

Construction 2 Let TA×{0} = (TA×{0}, σ, τ) be the TAS, where,

TA×{0} = { tc | t ∈ T and c ∈ C}∪{ t | t is a tile type defined in the above list},

τ = 2, and σ consists of the leftmost tile type in group (1) of the above list placed
at the point (0, 1).

4.2 Overview of Construction 2

This section gives a high level, intuitive description of Construction 2. Note that
TA×{0} is singly-seeded, with the leftmost tile in group (1) of Section 4.1 being
the seed tile type placed at the point (0, 1).

The tile set TA×{0} is constructed in two phases. First, we use the definition
of the TM M to generate TM(x) as in Construction 1. We then “embed” a
binary counter directly into these tile types in order to simulate the self-assembly
version of a loop. This creates a tile set which can simulate M on every input
x ∈ N (assuming A is decidable), while passing the values of a binary counter
up through the assembly. These are the tiles that form the yellow portion of the
structure shown in Figure 1, and labeled M(0), M(1), and M(2).

In order to provide M with a one-way, infinite-to-the-right work tape, every
row in our construction that represents a computation step grows the tape by one
tape cell to the right. The binary counter used to simulate a loop, running M on

M(0)

M(1)

M(2)

Fig. 1: The left-most (orange) bars represent a binary counter that is embedded into
the tile types of the TM; the darkest (green) rows represent the initial configuration of
M on inputs 0, 1, and 2; and the (green) horizontal rows that contain a white/black
tile represent halting configurations of M . Although this image seems to imply that
the embedded binary counter increases its width (to the left) on each input, this is
not true in our construction. This image merely depicts the conceptual “shape” of the
log-width counter that is embedded in our construction.

each input, is log-width and grows left into the second quadrant (represented by
the slightly brighter yellow tiles on the leftmost side of Figure 1). An increment
operation is performed immediately above each halting configuration of M .

The tile types that represent the initial configuration of M (on some input x)
are shown in group (2) of Section 4.1. These tile types initiate each computation
by using the value of x, embedded in the tile types of the binary counter, to
construct a TM configuration with x located in its leftmost portion and q0

reading the leftmost symbol of x.

Next, we construct the tile types for the ACCEPT and REJECT rows (i.e.,
halting configurations of M). To do this, we construct tile types that form a row
immediately above the any row that represents a halting configuration of M .
Conceptual examples of these rows are shown in Figure 1 as those with the black
and white tiles, which represent ACCEPT and REJECT signals, respectively.
The tile types that make up halting configurations are constructed in groups (3)
and (4) of Section 4.1.

It is straightforward to construct the set of tile types that self-assemble a
row that increments the value of the embedded binary counter (on top of the
row that represents the halting configuration of M on x). These tile types are
shown in group (5) of Section 4.1. After the counter increments, it initiates the
simulation of M on input x+1. We prefix the north edge colors of the tile types
that make up a counter row with ‘∼’ so as to signal that the next row should be
the initial configuration of M on x + 1. This has the effect of simulating M on
x + 1 directly on top of the simulation of M on x.

A

R

D

D

D

D

D

D

D

D

S

Fig. 2: The lightest (yellow) tiles represent successive simulations of M . When M halts
and accepts, an accept signal (darkest shade of grey or red tiles) is sent down along
the right side of the assembly to the appropriate point on the negative y-axis. The
reject signals (middle shade of grey tiles) operate in the same fashion. The diagonal
(D) signal allows each halting signal to essentially “turn” the corner.

The tile types in group (6) of Section 4.1 simply allow the blank symbol to
propagate up through the assembly.

The final component of TA×{0} is a group of tile types that carry the AC-
CEPT and REJECT signals to the appropriate location on the x-axis. These
tile types are shown in groups (7) and (8) of Section 4.1, and their functionality
can be seen in Figure 2.

4.3 Proof of First Main Theorem

Lemma 2. Let A ⊆ N be decidable. The set A × {0} weakly self-assembles in
the locally deterministic TAS TA×{0}.

Proof. The details of this proof are tedious, and therefore omitted from this
version of the paper.

The following technical result is a primitive self-assembly simulator.

Lemma 3. Let A ⊆ Z
2. If A weakly self-assembles, then there exists a TM MA

with L (MA) = A.

Proof. Assume that A weakly self-assembles. Then there exists a TAS T =
(T, σ, τ) in which the set A weakly self-assembles. Let B be the set of “black”
tile types given in the definition of weak self-assembly. Fix some enumeration
a1, a2, a3 . . . of Z

2, and let MA be the TM, defined as follows.

Require: v ∈ Z
2

α := σ

while v 6∈ dom α do
choose the least j ∈ N such that some tile can be added to α at aj

choose some t ∈ T that can be added to α at aj

add t to α at aj

end while
if α (v) ∈ B then

accept
else

reject
end if

It is routine to verify that MA accepts A.

Lemma 4. Let A ⊆ N. If A×{0} and Ac ×{0} weakly self-assemble, then A is
decidable.

Proof. Assume the hypothesis. Then by Lemma 3, there exist TMs MA×{0}

and MAc×{0} satisfying L
(

MA×{0}

)

= A × {0}, and L
(

MAc×{0}

)

= Ac × {0},
respectively. Now define the TM M as follows.

Require: n ∈ N

Simulate both MA×{0} and MAc×{0} on input (n, 0) in parallel.
if MA×{0} accepts then

accept
end if
if MAc×{0} accepts then

reject
end if

It is clear that M is a decider for A.

Lemma 5. Let A ⊆ N. If the set A is decidable, then A × {0} and Ac × {0}
weakly self-assemble.

Proof. This follows immediately from Construction 2 and Lemma 2. Note that
the choice of the set B determines whether the set A × {0} or Ac × {0} weakly
self-assembles.

We now have the machinery to prove our main result.

Theorem 1 (first main theorem). Let A ⊆ N. The set A is decidable if and
only if A × {0} and Ac × {0} weakly self-assemble.

Proof. This follows from Lemmas 4 and 5.

In the next section, we will prove that our construction is optimal in some
natural sense with respect to the amount of space that it uses.

5 Two Quadrants are Sufficient and Necessary

In the proof of Theorem 1, we exhibited a directed TAS that placed at least
one tile in each of three different quadrants. This leads one to ask the natural
question: is it possible to do any better than three quadrants? In other words,
does Theorem 1 hold if only two quadrants of space are allowed?

It turns out that the answer to the previous question is yes. Namely, if we
simply shift the embedded binary counter in our construction to the right as its
width grows, then we only need two quadrants of space to self-assemble the set
A × {0}. (There is enough space to accommodate the counter bits because the
right edge of the TM simulation grows to the right faster than the right edge
of the counter.) Note that the modifications to the tile set are straightforward,
requiring the modification of only five tile types.

Now one must ask the question: does Theorem 1 hold when no more than
one quadrant of space is available? First note that Winfree [9] proved one spatial
dimension is sufficient to self-assemble A × {0} if A is regular. It is also easy to
see that if A ∈ DSPACE(n), then it is possible to modify our construction to
weakly self-assemble A×{0} using only one quadrant of space. However, and in
the remainder of this section, we will prove that, if A 6∈ DSPACE(2n), then it is
impossible to weakly self-assemble the set A×{0} in any “natural” way without
using more than one quadrant.

Note that, because of space-constraints, we merely sketch the proof of our
second main theorem in this version of the paper.

Definition 1. Let A ⊆ N be a decidable set and T be a TAS in which the
set A × {0} weakly self-assembles. We say that T row-computes A if, for every
α ∈ A�[T], the following conditions hold.

1. Let α be an assembly sequence of T with α = res(α). For all n ∈ N, there
exists a unique point (x0, y0) ∈ Q1 ∪ Q2 such that there is a path

Pn = 〈(x0, y0), (x1, y1), . . . , (xl−1, yl−1)〉

in the precedence graph Gα, where (xl−1, yl−1) = (n, 0) and y0 > y1 ≥ · · · ≥
yl−1 = 0.

2. Let P =
⋃∞

n=1 Pn, and α′ = α ↾ (dom α − P). For all m ∈ N, there is
a finite assembly sequence α = (αi | 0 ≤ i < k) satisfying α0 = α′ ↾

(Z × {0, . . .m − 1}), and dom res(α) = α′ ↾ (Z × {0, . . . , m}).

We assume that if T row-computes a set A ⊆ N, then every terminal assembly
α of T consists of two components: a simulation of some TM M with L(M) = A,
and the paths that determine the fate of the points along the x-axis. Intuitively,
condition (1) says that for every point (n, 0) along the x-axis, there is a unique
point in the first or second quadrant, and the path Pn that connects the former
point to the latter carries the answer to the following question: “Is n ∈ A?”
For technical reasons, we assume that the path Pn never grows “up.” Finally,
condition (2) says that the simulation component of α can self-assemble one row
at a time.

It is clear that, for any decidable set A ⊆ N, the construction that we outlined
at the beginning of this section row-computes A.

Theorem 2 (second main theorem). Let A ⊆ N. If A 6∈ DSPACE (2n), and
T is any TAS that row-computes A, then for all α ∈ A�[T], α (Q1)∩α (Qc

1) 6= ∅.

Proof (Proof sketch). Assume for the sake of contradiction that for every ter-
minal assembly α of T , dom α ⊆ Q1. Since T row-compute A, there must be
a path P in Gα from some point (x0, y0) ∈ Q1 to some point along the x-axis.
Moreover, the path P must “turn left” at some point. If this were not the case
for every such path, then it is possible to use condition (2) in the definition of
row-computes to show that A ∈ DSPACE(n), which contradicts the fact that
A 6∈ DSPACE(2n).

Since there is one path that, en route to the x-axis, turns left (at some point),
every successive path must do so. Because dom α ⊆ Q1, there exists n ∈ N for
which a path terminating at the point (n, 0) goes through the point (n + 1, 0).
This clearly violates condition (1) of the definition of row-computes. Hence, our
initial assumption must be wrong, and the theorem follows.

In other words, Theorem 2 says that if A has sufficient space complexity,
then it is impossible to weakly self-assemble the set A × {0} in any “natural”
way with the entire assembly being contained entirely in the first quadrant. This
is the sense in which the construction that we outlined at the beginning of this
section is optimal.

6 Conclusion

In this paper, we investigated the self-assembly of decidable sets of natural num-
bers in the TAM. We first proved that, for every decidable language A ⊆ N,
A × {0} and Ac × {0} weakly self-assemble. This implied a novel characteriza-
tion of decidable sets in terms of self-assembly. Our second main theorem estab-
lished that in order to achieve this compactness (i.e., self-assembly of A × {0}

as opposed to f(A) × {0} for some function f) for spatially complex languages,
any “natural” construction will inevitably utilize strictly more than one quad-
rant of space. In fact, we conjecture that Theorem 2 holds for any TAS T in
which A × {0} weakly self-assembles. Our results continue to expose the rich
interconnectedness between geometry and computation in the TAM.

Acknowledgment Both authors wish to thank Dave Doty for pointing out
simplifications to Section 5.

References

1. Qi Cheng, Ashish Goel, and Pablo Moisset de Espanés, Optimal self-assembly of
counters at temperature two, Proceedings of the First Conference on Foundations of
Nanoscience: Self-assembled Architectures and Devices, 2004.

2. James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers, Com-
putability and complexity in self-assembly, Proceedings of The Fourth Conference
on Computability in Europe (Athens, Greece, June 15-20, 2008). To appear., 2008.

3. James I. Lathrop, Jack H. Lutz, and Scott M. Summers, Strict self-assembly of
discrete Sierpinski triangles, Proceedings of The Third Conference on Computability
in Europe (Siena, Italy, June 18-23, 2007), 2007.

4. Paul W. K. Rothemund, Theory and experiments in algorithmic self-assembly, Ph.D.
thesis, University of Southern California, December 2001.

5. Paul W. K. Rothemund and Erik Winfree, The program-size complexity of self-
assembled squares (extended abstract)., Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, 2000, pp. 459–468.

6. David Soloveichik and Erik Winfree, Complexity of self-assembled shapes, SIAM
Journal on Computing 36, 2007, pp. 1544–1569.

7. Hao Wang, Proving theorems by pattern recognition – II, The Bell System Technical
Journal XL (1961), no. 1, 1–41.

8. , Dominoes and the AEA case of the decision problem, Proceedings of the
Symposium on Mathematical Theory of Automata (New York, 1962), Polytechnic
Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y., 1963, pp. 23–55.

9. Erik Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology, June 1998.

