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Abstract

In this paper, we search for absolute limitations of the Tile Assembly Model (TAM), along
with techniques to work around such limitations. Specifically, we investigate the self-assembly
of fractal shapes in the TAM. We prove that no self-similar fractal fully weakly self-assembles
at temperature 1, and that certain kinds of self-similar fractals do not strictly self-assemble at
any temperature. Additionally, we extend the fiber construction from Lathrop et. al. (2007) to
show that any self-similar fractal belonging to a particular class of “nice” self-similar fractals
has a fibered version that strictly self-assembles in the TAM.

1 Introduction

Self-assembly is a bottom-up process by which (usually a small number of) fundamental components
automatically coalesce to form a target structure. In 1998, Winfree [15] introduced the (abstract)
Tile Assembly Model (TAM) - an extension of Wang tiling [13, 14], and a mathematical model
of the DNA self-assembly pioneered by Seeman et. al. [11]. In the TAM, the fundamental com-
ponents are un-rotatable, but translatable “tile types” whose sides are labeled with glue “colors”
and “strengths.” Two tiles that are placed next to each other interact if the glue colors on their
abutting sides match, and they bind if the strength on their abutting sides matches, and is at least
a certain “temperature.” Rothemund and Winfree [10, 9] later refined the model, and Lathrop et.
al. [7] gave a treatment of the TAM in which equal status is bestowed upon the self-assembly of
infinite and finite structures. There are also several generalizations [2, 8, 5] of the TAM.

Despite its deliberate over-simplification, the TAM is a computationally and geometrically ex-
pressive model. For instance, Winfree [15] proved that the TAM is computationally universal, and
thus can be directed algorithmically. Winfree [15] also exhibited a seven-tile-type self-assembly sys-
tem, directed by a clever XOR-like algorithm, that “paints” a picture of a well-known shape, the
discrete Sierpinski triangle S, onto the first quadrant. Note that the underlying shapes of each of
the previous results are infinite canvases that cover the first quadrant, onto which computationally
interesting shapes are painted (i.e., full weak self-assembly). Moreover, Lathrop et. al [6] recently
gave a new characterization of the computably enumerable sets in terms of weak self-assembly using
a “ray construction.” It is natural to ask the question: How expressive is the TAM with respect to
the self-assembly of a particular, possibly infinite shape, and nothing else (i.e., strict self-assembly)?
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In the case of strict self-assembly of finite shapes, the TAM certainly remains an interesting
model, so long as the size (tile complexity) of the assembly system is required to be “small” relative
to the shape that it ultimately produces. For instance, Rothemund and Winfree [10] proved that
there are small tile sets in which large squares self-assemble. Moreover, Soloveichik and Winfree [12]
established the remarkable fact that, if one is not concerned with the scale of an “algorithmically
describable” finite shape, then there is always a small tile set in which the shape self-assembles.
Note that if the tile complexity of an assembly system is unbounded, then every finite shape trivially
(but perhaps not feasibly) self-assembles.

When the tile complexity of an assembly system is unbounded (yet finite), only infinite shapes
are of interest. In the case of strict self-assembly of infinite shapes, the power of the TAM has
only recently been investigated. Lathrop et. al. [7] established that self-similar tree shapes do not
strictly self-assemble in the TAM given any finite number of tile types. A “fiber construction” is
also given in [7], which strictly self-assembles a non-trivial fractal structure.

In this paper, we search for (1) absolute limitations of the TAM, with respect to the strict
self-assembly of shapes, and (2) techniques that allow one to “work around” such limitations.
Specifically, we investigate the strict self-assembly of fractal shapes in the TAM. We prove three
main results: two negative and one positive. Our first negative (i.e., impossibility) result says
that no self-similar fractal fully weakly self-assembles in the TAM at temperature 1. In our second
impossibility result, we exhibit a class of discrete self-similar fractals, to which the standard discrete
Sierpinski triangle belongs, that do not strictly self-assemble in the TAM (at any temperature).
Finally, in our positive result, we use simple modified counters to extend the fiber construction
from Lathrop et. al. [7] to a particular class of discrete self-similar fractals.

2 Preliminaries

2.1 The Tile Assembly Model

We work in the 2-dimensional discrete Euclidean space Z2. We write U2 for the set of all unit
vectors, i.e., vectors of length 1 in Z2. We write [X]2 for the set of all 2-element subsets of a set X.
All graphs here are undirected graphs, i.e., ordered pairs G = (V,E), where V is the set of vertices
and E ⊆ [V ]2 is the set of edges. A grid graph is a graph G = (V,E) in which V ⊆ Z2 and every
edge {~a,~b} ∈ E has the property that ~a−~b ∈ U2. The full grid graph on a set V ⊆ Z2 is the graph

G#
V = (V,E) in which E contains every

{

~a,~b
}

∈ [V ]2 such that ~a −~b ∈ U2.

We now give a brief sketch of the Tile Assembly Model. See [15, 10, 9, 7] for other developments
of the model.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a well-
defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” of “color” colt(~u) - a string over
some fixed alphabet Σ - and “strength” strt(~u) - a natural number - specified by its type t. Two
tiles t and t′ that are placed at the points ~a and ~a + ~u respectively, bind with strength strt (~u) if
and only if (colt (~u) , strt (~u)) = (colt′ (−~u) , strt′ (−~u)).

Given a set T of tile types, an assembly is a partial function α : Z2
99K T . An assembly is stable

if it cannot be broken up into smaller assemblies without breaking bonds of total strength at least
τ .

Self-assembly begins with a seed assembly σ and proceeds asynchronously and nondeterminis-
tically, with tiles adsorbing one at a time to the existing assembly in any manner that preserves



stability at all times. A tile assembly system (TAS) is an ordered triple T = (T, σ, τ), where T is a
finite set of tile types, σ is a seed assembly with finite domain, and τ = 2 is the temperature. An
assembly α is terminal, and we write α ∈ A�[T ], if no tile can be stably added to it. A TAS T is
directed, or produces a unique assembly, if it has exactly one terminal assembly.

A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, τ) and a set B ⊆ T such
that α−1(B) = X holds for every terminal assembly α. A set X fully weakly self-assembles if it
weakly self-assembles in some TAS T , and every terminal assembly of T tiles the entire plane. A
set X strictly self-assembles if there is a TAS T for which every terminal assembly has domain X.

An assembly sequence in a TAS T = (T, σ, τ) is an infinite sequence ~α = (α0, α1, α2, . . .) of
assemblies in which α0 = σ and each αi+1 is obtained from αi by the “τ -stable” addition of a
single tile. To prove that a particular TAS T = (T, σ, τ) is directed, it suffices to exhibit a locally
deterministic [12] assembly sequence.

2.2 Discrete Self-Similar Fractals

In this subsection we introduce discrete self-similar fractals, and zeta-dimension [4].

Definition. Let 1 < c ∈ N, and X ( N2 (we do not consider N2 to be a self-similar fractal). We
say that X is a c-discrete self-similar fractal, if there is a set {(i, i) | i ∈ {0, . . . c − 1}} 6= V ⊆
{0, . . . , c − 1} × {0, . . . , c − 1} such that

X =

∞
⋃

i=0

Xi,

where Xi is the ith stage satisfying X0 = {(0, 0)}, and Xi+1 = Xi ∪
(

Xi + ciV
)

. In this case, we
say that V generates X. X is a discrete self-similar fractal if it is a c-discrete self-similar fractal
for some c ∈ N.

In this paper, we are concerned with the following class of self-similar fractals.

Definition. A nice discrete self-similar fractal is a discrete self-similar fractal such that ({0, . . . , c−

1} × {0}) ∪ ({0} × {0, . . . , c − 1}) ⊆ V , and G#
V is connected.

(a) Nice (b) Non-nice

Figure 1: The first stages of discrete self-similar fractals. The fractals in (a) are nice, whereas (b) shows
two non-nice fractals.

The most commonly used dimension for discrete fractals is zeta-dimension, which we use in this
paper.

Definition. (Doty et. al. [4]) For each set A ⊆ Z2, the zeta-dimension of A is

Dimζ(A) = lim sup
n→∞

log |A≤n|

log n
,

where A≤n = {(k, l) ∈ A | |k| + |l| ≤ n}.

It is clear that 0 ≤ Dimζ(A) ≤ 2 for all A ⊆ Z2.



3 Impossibility Results

In this section, we explore the theoretical limitations of the Tile Assembly Model with respect to
the self-assembly of fractal shapes. First, we establish that no discrete self-similar fractal fully
weakly self-assembles at temperature τ = 1. Second, we exhibit a class C of discrete self-similar
fractals, and prove that if F ∈ C, then F does not strictly self-assemble in the TAM.

In this version of the paper, we merely state our results without proof. Full proofs of our results
can be found at the following URL: http://www.cs.iastate.edu/~lnsa.

Definition. (Lathrop et. al. [7]) Let G = (V,E) be a graph, and let D ⊆ V . For each r ∈ V , the
D-r-rooted subgraph of G is the graph GD,r = (VD,r, ED,r), where

VD,r = {v ∈ V | every simple path from v to (any vertex in) D in G goes through r}

and ED,r = E ∩ [VD,r]
2. B is a D-subgraph of G if it is a D-r-rooted subgraph of G for some r ∈ V .

Definition. Let G = (V,E) be a graph. Fix a set D ⊆ V , and let r, r′ ∈ V .

1. (Adleman et. al. [1]) GD,r is isomorphic to GD,r′ , and we write GD,r ∼ GD,r′ if there exists
a vector ~a ∈ Z2 such that VD,r = VD,r′ + ~a.

2. We say that GD,r is unique if GD,r ∼ GD,r′ ⇒ r = r′.

We will use the following technical result to prove that no self-similar fractal fully weakly self-
assembles at temperature τ = 1.

Lemma 1. (Adleman et. al. [1]) Let X ( N2 such that G#
X is a finite tree, and assume that

X strictly self-assembles in the TAS T = (T, σ, τ). Let α ∈ A�[T ]. If α (~u) = α (~v), then the
Gdom σ,~u ∼ Gdom σ,~v .

We now have the machinery to prove our first impossibility result.

Theorem 1. If F ( N2 is a discrete self-similar fractal, and F fully weakly self-assembles in the
TAS TF = (T, σ, τ), where σ consists of a single tile placed at the origin, then τ > 1.

Note that Theorem 1 says that even if one is allowed to place a tile at every location in the first
quadrant, it is still impossible for self-similar fractals to weakly self-assemble at temperature 1.

Next, we exhibit a class C of (non-tree) “pinch-point” discrete self-similar fractals that do not
strictly self-assemble. Before we do so, we establish the following lower bound.

Lemma 2. If X ⊆ Z2 strictly self-assembles in the TAS T = (T, σ, τ), where σ consists of a single

tile placed at the origin, then |T | ≥
∣

∣

∣

{

B
∣

∣

∣
B is a unique dom σ-subgraph of G#

X

}∣

∣

∣
.

Lemma 2 is not as tight as possible, but it applies to a general class of fractals. Our second
impossibility result is the following.

Theorem 2. If X ( N2 is a discrete self-similar fractal satisfying (1) {(0, 0), (0, c−1), (c−1, 0)} ⊆

V , (2) V ∩ ({1, . . . c − 1} × {c − 1}) = ∅, (3) V ∩ ({c − 1} × {1, . . . , c − 1}) = ∅, and (4) G#
V is

connected, then X does not strictly self-assemble in the Tile Assembly Model.

Corollary 1 (Lathrop, et. al. [7]). The standard discrete Sierpinski triangle S does not strictly
self-assemble in the Tile Assembly Model.



4 Every Nice Self-Similar Fractal Has a Fibered Version

In this section, given a nice c-discrete self-similar fractal X ( N2 (generated by V ), we define its
fibered counterpart X. Intuitively, X is nearly identical to X, but each successive stage of X is
slightly thicker than the equivalent stage of X (see Figure 2 for an example). Our objective is to
define sets F0, F1, . . . ⊆ Z2, sets T0, T1, . . . ⊆ Z2, and functions l, f, t : N → N with the following
meanings.

1. Ti is the ith stage of our construction of the fibered version of X.

2. Fi is the fiber associated with Ti. It is the smallest set whose union with Ti has a vertical left
edge and a horizontal bottom edge, together with one additional layer added to these two
now-straight edges.

3. l(i) is the length (number of tiles in) the left (or bottom) edge of Ti ∪ Fi.

4. f(i) = |Fi|.

5. t(i) = |Ti|.

These five entities are defined recursively by the equations

T0 = X2 (the third stage of X),

F0 =
(

{−1} ×
{

−1, . . . , c2
})

∪
({

−1, . . . , c2
}

× {−1}
)

,

l(0) = c2 + 1, f(0) = 2c2 + 1, t(0) = (|V | + 1)2,

Ti+1 = Ti ∪ ((Ti ∪ Fi) + l(i)V ) ,

Fi+1 = Fi ∪ ({−i − 2} × {−i − 2,−i − 1, · · · , l(i + 1) − i − 3})

∪ ({−i − 2,−i − 1, · · · , l(i + 1) − i − 3} × {−i − 2}) ,

l(i + 1) = c · l(i) + 1,

f(i + 1) = f(i) + c · l(i + 1) − 1,

t(i + 1) = |V |t(i) + f(i).

Finally, we let

X =

∞
⋃

i=0

Ti.

Note that the set Ti ∪ Fi is the union of an “outer framework,” with an “internal structure.”
One can view the outer framework of Ti∪Fi as the union of a square Si (of size i+2), a rectangle Xi

(of height i+2 and width l(i)− (i+2)), and a rectangle Yi (of width i+2 and height l(i)− (i+2)).
Moreover, one can show that the internal structure of Ti ∪Fi is simply the union of (appropriately-
translated copies) of smaller and smaller Xi and Yi-rectangles.

We have the following “similarity” between X and X.

Lemma 3. If X ( N2 is a nice self-similar fractal, then Dimζ(X) = Dimζ(X).

In the next section we sketch a proof that the fibered version of every nice self-similar fractal
strictly self-assembles.



l(2)

T2

T1T1

T0T0

F0

F1

F2

Figure 2: Construction of the fibered Sierpinski carpet. The blue, orange, and yellow tiles represent (possibly
translated copies of) F0, F1, and F2, respectively.

5 Sketch of Main Construction

Our second main theorem says that the fibered version of every nice self-similar fractal strictly
self-assembles in the Tile Assembly Model (regardless of whether the latter strictly self-assembles).

Theorem 3. For every nice self-similar fractal X ⊂ N2, there is a directed TAS in which X strictly
self-assembles.

We now give a brief sketch of our construction of the singly-seeded TAS TX = (XX, σ, 2) in
which X strictly self-assembles. The full construction is implemented in C++, and is available at
the following URL: http://www.cs.iastate.edu/~lnsa.

Throughout our discussion, S~u, Y~u, and X~u refer to the square, the vertical rectangle and the
horizontal rectangle, respectively, that form the “outer framework” of the set ((Ti ∪ Fi) + l(i) · ~u)
(See the right-most image in Figure 4).

5.1 Construction Phase 1

Here, directed graphs are considered. Let X be a nice (c-discrete) self-similar fractal generated by

V . We first compute a directed spanning tree B = (V,E) of G#
V using a breadth-first search, and

then compute the graph BR =
(

V,ER
)

, where

ER = {(~v, ~u) | (~u,~v) ∈ E and ~u 6= (0, 0)} ∪ {((0, 1), (0, c − 1)), ((1, 0), (c − 1), 0)}.

Figure 3 depicts phase 1 of our construction for a particular nice self-similar fractal.

Notation. For all ~0 6= ~u ∈ V , ~uin is the unique location ~v satisfying (~u,~v) ∈ ER.

5.2 Construction Phase 2

In the second phase we construct, for each (0, 0) 6= ~u ∈ V , a finite set of tile types T~u that
self-assemble a particular subset of X. There are two cases to consider.



(0,1)

(0,2)

(0,3)

(0,4) (1,4)

(0,0)(0,0) (1,0)
(2,0) (3,0) (4,0)

(4,1)

(4,2)

(4,3)

(2,2)

(2,3) (3,3)

(0,1)

(1,0)

Figure 3: Phase 1 of our construction. Notice the two special cases (right-most image) in which we define
(0, 1)in and (1, 0)in.

Case 1 In the first case, we generate, for each ~u ∈ V − {(0, 0), (0, 1), (1, 0)}, three sets of tile
types TS~u

, TX~u
, and TY~u

that, when combined together, and assuming the presence of
((Ti ∪ Fi) + l(i) · ~uin), self-assemble the set ((Ti ∪ Fi) + l(i) · ~u), for any i ∈ N.

Case 2 In the second case, we generate, for each ~u ∈ {(0, 1), (1, 0)}, the same three sets of tile
types (TS~u

, TX~u
, and TY~u

) that self-assemble the set ((Ti ∪ Fi) + l(i) · ~u) “on top of” the set
((Ti−1 ∪ Fi−1) + l(i − 1) · ~uin), for any i ∈ N.

Finally, we let TX =
⋃

(0,0)6=~u∈V T~u, where T~u = TS~u
∪ TX~u

∪ TY~u
. Figure 4 gives a visual

interpretation of the second phase of our construction. Our TAS is TX = (TX, σ, 2), where σ
consists of a single “seed” tile type placed at the origin. Our full construction yields a tile set of
5983 tile types for the fractal generated by the points in the left-most image in Figure 4.

5.3 Details of Construction

Note that in our construction, the self-assembly of the sub-structures S~u, Y~u, and X~u can proceed
either forward (away from the axes) or backward (toward the axes).

(0,0)

S~u X~u

Y~u

Figure 4: Let V be the left-most image. The first arrow represents phase 2 of the construction. The
second arrow shows a magnified view of a particular point in V . Each point (0, 0) 6= ~u ∈ V can be viewed
conceptually as three components: the tile sets TS~u

, TX~u
and TY~u

that ultimately self-assemble the square
S~u, and the horizontal and vertical rectangles X~u and Y~u respectively.



5.3.1 Forward Growth

We now discuss the self-assembly of the set ((Ti ∪ Fi) + ~u · l(i)) for ~u ∈ V satisfying ~uin ∈
(~u + {(−1, 0), (0,−1)}).

If ~u 6∈ {(0, 0), (0, 1), (1, 0)} (i.e., case 1 of phase 2), then the tile set TS~u
self-assembles the

square S~u directly on top (or to the right) of, and having the same width (height) as, the rect-
angle Y~uin

(X~uin
). If ~u ∈ {(0, 1), (1, 0)} (i.e., case 2 of phase 2), then the tile set TS~u

self-
assembles the square S~u on top (or to the right) of the set Y~uin

such that right (top) edge of
the former is flush with that of the latter. Note that in case 2, the width of Y~uin

is always
one less than that of S~u. In either case, it is straightforward to construct such a tile set TS~u

.
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Figure 5: Example of a
base-3 modified binary
counter. The darker
shaded rows are the
spacing rows.

The tile set of TY~u
self-assembles a fixed-width base-c counter (based on

the “optimal” binary counter presented in [3]) that, assuming a width of
i ∈ N, implements the following counting scheme: Count each positive
integer j, satisfying 1 ≤ j ≤ ci − 1, in order but count each number
exactly

[[c divides j]] · ρ(j) + [[c does not divide j]] · 1

times, where ρ(j) is the largest number of consecutive least-significant
0’s in the base-c representation of j, and [[φ]] is the Boolean value of the
statement φ. The value of a row is the number that it represents. We
refer to any row whose value is a multiple of c as a spacing row. All
other rows are count rows. The type of the counter that self-assembles
Y~u is ~u.

Each counter self-assembles on top (or to the right) of the square S~u,
with the width of the counter being determined by that of the square. It
is easy to verify that if the width of S~u is i + 2, then T~Y~u

self-assembles
a rectangle having a width of i + 2 and a height of

(

c2 + 1
)

ci +
ci − 1

c − 1
= l(i) − (i + 2),

which is exactly Y~u. Figure 5 shows the counting scheme of a base-3
counter of width 3. We construct the set TX~u

by simply reflecting the
tile types in TY~u

about the line y = x, whence the three sets of tile
types TS~u

, TX~u
, and TY~u

self-assemble the “outer framework” of the set
((Ti ∪ Fi) + ~u · l(i)).

The “internal structure” of the set ((Ti ∪Fi) + ~u · l(i)) self-assembles
as follows. Oppositely oriented counters attach to the right side of each contiguous group of
spacing rows in the counter (of type ~u) that self-assembles Y~u. The number of such spacing rows
determines the height of the horizontal counter, and its type is (0, j/c mod c), where j is the value
of the spacing rows to which it attaches. We also hard code the glues along the right side of each
non-spacing row to self-assemble the internal structure of the points in the set T0.

The situation for X~u is similar (i.e., a reflection of its vertical counterpart), with the exception
that the glues along the top of each non-spacing row are configured differently than they were for
Y~u. This is because nice self-similar fractals need not be symmetric.

One can prove that, by recursively attaching smaller oppositely-oriented counters (of the ap-
propriate type) to larger counters in the above manner, the internal structure of ((Ti ∪Fi)+~u · l(i))
self-assembles.



5.3.2 Reverse Growth

We now discuss the self-assembly of the set ((Ti ∪ Fi) + ~u · l(i)), for all ~u ∈ V satisfying ~uin ∈
(~u + {(1, 0), (0, 1)}).

In this case, the tile set TY~u
(TX~u

) self-assembles the set Y~u (X~u) directly below (or to the left
of) the square S~uin

, and grows toward the x-axis (or y-axis) according to the base-c counting scheme
outlined above. We also configure TY~u

(TX~u
) so that the right (or top)-most edge of Y~u (X~u) is

essentially the “mirror” image of its forward growing counterpart (See Figure 6). This last step
ensures that the internal structure of ((Ti ∪Fi) + ~u · l(i)) self-assembles correctly. Next, the square
S~u attaches to the bottom (or left)-most edge of Y~u (X~u). Finally, the set X~u (Y~u) self-assembles
via forward growth from the left (or top) of the square S~u.

S~u X~u

(a)

S~uin
X~u

(b)

S~uin
X~u

(c)

Figure 6: (a) depicts forward growth, (b) shows what happens if the tile set TX~u
were to simply “count in

reverse,” and (c) is the desired result.

5.3.3 Proof of Correctness

To prove the correctness of our construction, we use a local determinism argument. The details of
the proof are technical, and therefore omitted from this version of the paper.

6 Conclusion

In this paper, we (1) established two new absolute limitations of the TAM, and (2) showed that
fibered versions of “nice” self-similar fractals strictly self-assemble. Our impossibility results moti-
vate the following question: Is there a discrete self-similar fractal X ( N2 that strictly self-assembles
in the TAM? Moreover, our positive result leads us to ask: If X ( N2 is a discrete self-similar frac-
tal, then is it always the case that X has a “fibered” version X that strictly self-assembles, and
that is similar to X in some reasonable sense?

Acknowledgment

We thank Dave Doty, Jim Lathrop, Jack Lutz, and Aaron Sterling for useful discussions.

References

[1] Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David Kempe, Pablo Moisset de Es-
panés, and Paul W. K. Rothemund, Combinatorial optimization problems in self-assembly, Proceedings
of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, 2002, pp. 23–32.



[2] Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kau, and Robert T. Schweller, Complexities for
generalized models of self-assembly, Proceedings of ACM-SIAM Symposium on Discrete Algorithms,
2004.

[3] Qi Cheng, Ashish Goel, and Pablo Moisset de Espanés, Optimal self-assembly of counters at temperature
two, Proceedings of the First Conference on Foundations of Nanoscience: Self-assembled Architectures
and Devices, 2004.

[4] D. Doty, X. Gu, J.H. Lutz, E. Mayordomo, and P. Moser, Zeta-Dimension, Proceedings of the Thirtieth
International Symposium on Mathematical Foundations of Computer Science, Springer-Verlag, 2005,
pp. 283–294.

[5] Ming-Yang Kao and Robert Schweller, Reducing tile complexity for self-assembly through temperature
programming, Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2006), Miami, Florida, Jan. 2006, pp. 571-580, 2007.

[6] James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers, Computability and com-
plexity in self-assembly, Proceedings of The Fourth Conference on Computability in Europe (Athens,
Greece, June 15-20, 2008). To appear., 2008.

[7] James I. Lathrop, Jack H. Lutz, and Scott M. Summers, Strict self-assembly of discrete Sierpinski
triangles, Proceedings of The Third Conference on Computability in Europe (Siena, Italy, June 18-23,
2007), 2007.

[8] Urmi Majumder, Thomas H LaBean, and John H Reif, Activatable tiles for compact error-resilient
directional assembly, 13th International Meeting on DNA Computing (DNA 13), Memphis, Tennessee,
June 4-8, 2007., 2007.

[9] Paul W. K. Rothemund, Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University
of Southern California, December 2001.

[10] Paul W. K. Rothemund and Erik Winfree, The program-size complexity of self-assembled squares (ex-
tended abstract)., Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
2000, pp. 459–468.

[11] N.C. Seeman, Nucleic-acid junctions and lattices, Journal of Theoretical Biology 99 (1982), 237–247.

[12] David Soloveichik and Erik Winfree, Complexity of self-assembled shapes, SIAM Journal on Computing
36, 2007, pp. 1544–1569.

[13] Hao Wang, Proving theorems by pattern recognition – II, The Bell System Technical Journal XL (1961),
no. 1, 1–41.

[14] , Dominoes and the AEA case of the decision problem, Proceedings of the Symposium on Math-
ematical Theory of Automata (New York, 1962), Polytechnic Press of Polytechnic Inst. of Brooklyn,
Brooklyn, N.Y., 1963, pp. 23–55.

[15] Erik Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology, June
1998.


