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Abstract

We review some recent results related to the self-assembly of infinite structures
in the Tile Assembly Model. These results include impossibility results, as well as
novel tile assembly systems in which shapes and patterns that represent various
notions of computation self-assemble. Several open questions are also presented and
motivated.

1 Introduction

The simplest mathematical model of nanoscale self-assembly is the Tile As-
sembly Model (TAM), an effectivization of Wang tiling [24, 25] that was in-
troduced by Winfree [27] and refined by Rothemund and Winfree [18, 19].
(See also [1, 17, 22].) As a basic model for the self-assembly of matter, the
TAM has allowed researchers to explore an assortment of avenues into both
laboratory-based and theoretical approaches to designing systems that self-
assemble into desired shapes or autonomously coalesce into patterns that, in
doing so, perform computations.

Actual physical experimentation has driven lines of research involving kinetic
variations of the TAM to deal with molecular concentrations, reaction rates,
etc. as in [26], as well as work focused on error prevention and error correction
[6, 21, 28]. For examples of the impressive progress in the physical realization
of self-assembling systems, see [20, 23].
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Divergent from, but supplementary to, the laboratory work, much theoreti-
cal research involving the TAM has also been carried out. Interesting ques-
tions concerning the minimum number of tile types required to self-assemble
shapes have been addressed in [2, 4, 19, 22]. Different notions of running time
and bounds thereof were explored in [5, 7, 14]. Variations of the model where
temperature values are intentionally fluctuated and the ensuing benefits and
tradeoffs can be found in [4, 10]. Systems for generating randomized shapes
or approximations of target shapes were investigated in [5, 11]. This is just a
small sampling of the theoretical work in the field of algorithmic self-assembly.

However, as different as they may be, the above mentioned lines of research
share a common thread. They all tend to focus on the self-assembly of finite
structures. Clearly, for experimental research, this is a necessary limitation.
Further, if the eventual goal of most of the theoretical research is to enable
the development of fully functional, real world self-assembly systems, a valid
question is: “Why care about anything other than finite structures?” This is
the question that we address in this paper.

This paper surveys a collection of recent findings related to the self-assembly
of infinite structures in the TAM. As a theoretical exploration of the TAM,
this collection of results seeks to define absolute limitations on the classes of
shapes that self-assemble. These results also help to explore how fundamental
aspects of the TAM, such as the inability of spatial locations to be reused and
their immutability, affect and limit the constructions and computations that
are achievable.

In addition to providing concise statements and intuitive descriptions of re-
sults, we also define and motivate a set of open questions in the hope of fur-
thering this line of research. First, we begin with some preliminary definitions
and constructions that will be referenced throughout this paper.

2 Preliminaries

2.1 The Tile Assembly Model

This section provides a very brief overview of the TAM. See [13,18,19,27] for
other developments of the model. Our notation is that of [13]. We work in the
2-dimensional discrete space Z2. We write U2 for the set of all unit vectors, i.e.,
vectors of length 1 in Z2. We write [X]2 for the set of all 2-element subsets of
a set X. All graphs here are undirected graphs, i.e., ordered pairs G = (V, E),
where V is the set of vertices and E ⊆ [V ]2 is the set of edges.
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A grid graph is a graph G = (V, E) in which V ⊆ Z2 and every edge {~a,~b} ∈ E

has the property that ~a − ~b ∈ U2. The full grid graph on a set V ⊆ Z2 is
the graph G

#
V = (V, E) in which E contains every {~a,~b} ∈ [V ]2 such that

~a −~b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not rotated,
having a well-defined “side ~u” for each ~u ∈ U2. Each side ~u of t has a “glue” of
“color” colt(~u) - a string over some fixed alphabet Σ - and “strength” strt(~u)
- a natural number - specified by its type t. Two tiles t and t′ that are placed
at the points ~a and ~a + ~u respectively, bind with strength strt (~u) if and only
if (colt (~u) , strt (~u)) = (colt′ (−~u) , strt′ (−~u)).

Given a set T of tile types, an assembly is a partial function α : Z2
99K T .

An assembly is τ -stable, where τ ∈ N, if it cannot be broken up into smaller
assemblies without breaking bonds whose strengths sum to at least τ .

Self-assembly begins with a seed assembly σ and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing as-
sembly in any manner that preserves stability at all times. A tile assembly
system (TAS) is an ordered triple T = (T, σ, τ), where T is a finite set of
tile types, σ is a seed assembly with finite domain, and τ is the temperature.
An assembly sequence in a TAS T = (T, σ, 1) is a (possibly infinite) sequence
~α = (αi | 0 ≤ i < k) of assemblies in which α0 = σ and each αi+1 is obtained
from αi by the “τ -stable” addition of a single tile. We write A [T ] for the set
of all producible assemblies of T . An assembly α is terminal, and we write
α ∈ A2 [T ], if no tile can be stably added to it. We write A2 [T ] for the set
of all terminal assemblies of T . A TAS T is directed, or produces a unique
assembly, if it has exactly one terminal assembly i.e., |A2 [T ] | = 1. The reader
is cautioned that the term “directed” has also been used for a different, more
specialized notion in self-assembly [3].

A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, 1) and
a set B ⊆ T such that α−1(B) = X holds for every assembly α ∈ A2 [T ].
A set X strictly self-assembles if there is a TAS T for which every assembly
α ∈ A2 [T ] satisfies dom α = X. The reader is encouraged to consult [22] for
a detailed discussion of local determinism - a general and powerful method for
proving the correctness of tile assembly systems.

2.2 Discrete Self-Similar Fractals

In this subsection we introduce discrete self-similar fractals, and zeta-dimension.

Definition Let 1 < c ∈ N, and X ( N2. We say that X is a c-discrete self-
similar fractal, if there is a (non-trivial) set V ⊆ {0, . . . , c−1}×{0, . . . , c−1}
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such that X =
∞
⋃

i=0

Xi, where Xi is the ith stage satisfying X0 = {(0, 0)}, and

Xi+1 = Xi ∪ (Xi + ciV ). In this case, we say that V generates X.

(a) X0 (b) V = X1 (c) X2 (d) X3 (scaled
down)

Fig. 1. Example of a c-discrete self-similar fractal (c = 3), the Sierpinski carpet

The most commonly used dimension for discrete fractals is zeta-dimension,
which we refer to in this paper.

Definition [8] For each set A ⊆ Z2, the zeta-dimension of A is

Dimζ(A) = lim sup
n→∞

log |A≤n|

log n
,

where A≤n = {(k, l) ∈ A | |k|+ |l| ≤ n}. It is clear that 0 ≤ Dimζ(A) ≤ 2 for
all A ⊆ Z2.

2.3 The Wedge Construction
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Fig. 2: Example of the first four rows
of a sample wedge construction which
is simulating a Turing machine M on
the input string ‘01’

In order to perform universal com-
putation in the TAM, we make
use of a particular TAS called
the “wedge construction” [15].
The wedge construction, based on
Winfree’s proof of the universality
of the TAM [27], is used to simu-
late an arbitrary Turing machine
M = (Q, Σ, Γ, δ, q0, qA, qR) on a
given input string w ∈ Σ∗ in a
temperature 2 TAS.

The wedge construction works as
follows. Every row of the assem-
bly specifies the complete configu-
ration of M at some time step. M

starts in its initial state with the tape head on the leftmost tape cell and we
assume that the tape head never moves left off the left end of the tape. The
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seed row (bottommost) encodes the initial configuration of M . There is a spe-
cial tile representing a blank tape symbol as the rightmost tile in the seed row.
Every subsequent row grows by one additional cell to the right. This gives the
assembly the wedge shape responsible for its name. Figure 2 shows the first
four rows of a wedge construction for a particular TM, with arrows depicting
a possible assembly sequence.

3 Strict Self-Assembly

The self-assembly of shapes (i.e., subsets of Z2) in the TAM is most naturally
characterized by strict self-assembly. In searching for absolute limitations of
strict self-assembly in the TAM, it is necessary to consider infinite shapes
because any finite, connected shape strictly self-assembles via a spanning tree
construction in which there is a unique tile type created for each point. In this
section we discuss (both positive and negative) results pertaining to the strict
self-assembly of infinite shapes in the TAM.

3.1 Pinch-point Discrete Self-Similar Fractals Do Not Strictly Self-Assemble

In [16], Patitz and Summers defined a class C of (non-tree) “pinch-point”
discrete self-similar fractals, and proved that if X ∈ C, then X does not
strictly self-assemble.

Definition A pinch-point discrete self-similar fractal is a discrete self-similar
fractal satisfying (1) {(0, 0), (0, c− 1), (c− 1, 0)} ⊆ V , (2) V ∩ ({1, . . . c− 1}×
{c − 1}) = ∅, (3), V ∩ ({c − 1} × {1, . . . , c − 1}) = ∅, and G

#
V is connected

A famous example of a pinch-point fractal is the standard discrete Sierpinski
triangle S. The impossibility of the strict self-assembly of S was first shown
in [13]. Figure 3 shows another example of a pinch-point discrete self-similar
fractal. Note that any fractal X such that G

#
X is a tree is necessarily a pinch-

point discrete self-similar fractal.

The following (slight) generalization to [13] was shown in [16].

Theorem 3.1 If X ( N2 is a pinch-point discrete self-similar fractal, then
X does not strictly self-assemble in the TAM.

The idea behind the proof of Theorem 3.1 can be seen in Figure 3. Note that
the black points are pinch-points in the sense that arbitrarily large aperidic
sub-structures appear on the far-side of the black tile from the origin.
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Fig. 3: An example of the first four stages
of pinch-point fractal with the first three
pinch-points highlighted in black.

Theorem 3.1 motivates the follow-
ing question.

Open Problem 3.2 Does any non-
trivial discrete self-similar frac-
tal strictly self-assemble in the
TAM? We conjecture that the an-
swer is ‘no’, for any temperature
τ ∈ N. However, proving that
there exists a (non-trivial) dis-
crete self-similar fractal that does
strictly self-assemble would likely
involve a novel and useful algo-
rithm for directing the behavior
self-assembly.

3.2 Strict Self-Assembly of Nice
Discrete Self-Similar Fractals

As shown above, there is a class of discrete self-similar fractals that do not
strictly self-assemble (at any temperature) in the TAM. However, in [16],
Patitz and Summers introduced a particular set of “nice” discrete self-similar
fractals that contains some but not all pinch-point discrete self-similar frac-
tals. Further, they proved that any element of the former class has a “fibered”
version that strictly self-assembles.

3.2.1 Nice Discrete Self-Similar Fractals

Definition A nice discrete self-similar fractal is a discrete self-similar fractal
such that ({0, . . . , c − 1} × {0}) ∪ ({0} × {0, . . . , c − 1}) ⊆ V , and G

#
V is

connected.

See Figure 4 for examples of both nice, and non-nice discrete self-similar frac-
tals.

(a) Nice (b) Non-
nice

Fig. 4. Stage 2 of some discrete self-similar fractals.
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Fig. 5. Construction of the fibered Sierpinski carpet

3.2.2 Nice Fractals Have Fibered Versions

The inability of pinch-point fractals (and the conjectured inability of any
discrete self-similar fractal) to strictly self-assemble in the TAM is based on
the intuition that the necessary amount of information cannot be transmitted
through available connecting tiles during self-assembly.

Thus, for any nice discrete self-similar fractal X, Patitz and Summers [16]
defined a fibered operator F(X) (a routine extension of [13]) which adds, in
a zeta-dimension-preserving manner, additional bandwidth to X. Strict self-
assembly of F(X) is achieved via a “modified binary counter” algorithm that
is embedded into the additional bandwidth of F(X).

For any nice discrete self-similar fractal X, F(X) is defined recursively. Fig-
ure 5 shows an example of the construction of F(X), where X is the discrete
Sierpinski carpet. Note that F(X) is only defined if X is a nice discrete self-
similar fractal. Moreover, it appears non-trivial to extend F to other discrete
self-similar fractals such as the ‘H’ fractal (the second-to-the-right most image
in Figure 4).

Open Problem 3.3 Does there exist a zeta-dimension-preserving fibered op-
erator F for a class of discrete self-similar fractals which is a superset of
the nice discrete self-similar fractals (e.g. it also includes the ‘H’ fractal)?
The above open question is intentionally vague. Not only should F preserve
zeta-dimension, but F(X) should also “look” like X in some reasonable visual
sense.
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4 Weak Self-Assembly

Weak self-assembly is a natural way to define what it means for a tile assem-
bly system to compute. There are examples of (decidable) sets that weakly
self-assemble but do not strictly self-assemble (i.e., the discrete Sierpinski tri-
angle [13]). However, if a set X weakly self-assembles, then X is necessarily
computably enumerable. In this section, we discuss results that pertain to
the weak self-assembly of (1) discrete self-similar fractals [16], (2) decidable
sets [15], and (3) computably enumerable sets [12].

4.1 Discrete Self-Similar Fractals

Recall that pinch-point discrete self-similar fractals do not strictly self-assemble
(at any temperature). Furthermore, Patitz and Summers [16] proved that no
(non-trivial) discrete self-similar fractal weakly self-assembles in a locally de-
terministic [22] temperature 1 tile assembly system.

Theorem 4.1 If X ( N2 is a discrete self-similar fractal, and X weakly self-
assembles in the locally deterministic TAS TX = (T, σ, τ), where σ consists of
a single tile placed at the origin, then τ > 1.

Intuitively, the proof relies on the aperiodic nature of discrete self-similar
fractals and the fact that the binding (a.k.a. adjacency) graph of the terminal
assembly of TX is an infinite tree, and every infinite branch is composed of an
infinite, periodically repeating sequence of tile types.

Open Problem 4.2 Does Theorem 4.1 hold for any directed (not necessarily
locally deterministic) TAS? We conjecture that it does, and that such a proof
would provide useful new tools for impossibility proofs in the TAM.

4.2 Decidable Sets

We now shift gears and discuss the weak self-assembly of sets at temperature 2.

4.2.1 A Characterization of Decidable Sets of Natural Numbers

In [15], Patitz and Summers exhibited a novel characterization of decidable
sets of positive integers in terms of weak self-assembly in the TAM, where
they proved the following theorem.
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Theorem 4.3 Let A ⊆ N. Then A ⊆ N is decidable if and only if A × {0}
and Ac × {0} weakly self-assemble.

Theorem 4.3 is the “self-assembly version” of the classical theorem, which
says that a set A ⊆ N is decidable if and only if A and Ac are computably
enumerable. The following lemma makes the proof of the reverse direction of
Theorem 4.3 straight-forward.

Lemma 4.4 Let X ⊆ Z2. If X weakly self-assembles, then X is computably
enumerable.

The proof of Lemma 4.4 constructs a self-assembly simulator to enumerate X.

To prove the forward direction of Theorem 4.3, it suffices to construct an
infinite stack of wedge constructions and simply propagate the halting signals
down to the negative y-axis. This is illustrated in Figure 6.

M(0)

M(1)

M(2)

Fig. 6. The left-most (dark grey) vertical bars represent a binary counter that is
embedded into the tile types of the TM; the darkest (black) rows represent the
initial configuration of M on inputs 0, 1, and 2; and the (light grey) horizontal rows
that contain a white/black tile represent halting configurations of M . Although this
image seems to imply that the embedded binary counter increases its width (to the
left) each time it increments, this is not true in the construction. This image merely
depicts the general shape of the counter as it increments.

4.2.2 Quadrant Optimality

In addition to their positive result, Patitz and Summers [15] established that
any tile assembly system T that “row-computes” a decidable language A ⊆ N

having sufficient space complexity must place at least one tile in each of two
adjacent quadrants. A TAS T is said to row-compute a language A ⊆ N if
T simulates a TM M with L(M) = A on every input n ∈ N, one row at a
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time, and uses single-tile-wide paths of tiles to propagate the answer to the
question, “does M accept input n?” to the x-axis. Figure 6 depicts the essence
of what it means for a TAS to row-compute some language. This result, stated
precisely, is as follows.

Theorem 4.5 Let A ⊆ N. If A 6∈ DSPACE (2n), and T is any TAS that
“row-computes” A, then every terminal assembly of T places at least one tile
in each of two adjacent quadrants.

Open Problem 4.6 Let A ⊆ N with A 6∈ DSPACE (2n). Is it possible to
construct a directed TAS T in which the sets A × {0} and Ac × {0} weakly
self-assemble, and every terminal assembly α ∈ A2 [T ] is contained in the
first quadrant? We conjecture that the answer is ‘no’, and any proof would
account for all, possibly exotic methods of computation in the TAM, not only
by row-computing.

4.2.3 There Exists a Decidable Set That Does Not Weakly Self-Assemble

In contrast to Theorem 4.3, Lathrop, Lutz, Patitz, and Summers [12] proved
that there are decidable sets D ⊆ Z2 that do not weakly self-assemble. To see
this, for each r ∈ N, define

Dr = {(m, n) ∈ Z2
∣

∣

∣ |m| + |n| = r}.

This set is a “diamond” in Z2 with radius r and center at the origin. For each
A ⊆ N, let

DA =
⋃

r∈A

Dr.

This set is the “system of concentric diamonds” centered at the origin with
radii in A. Using Lemma 4.4, one can establish the following result.

Lemma 4.7 Let A ∈ N. If DA weakly self-assembles, then there exists an
algorithm that, given r ∈ N, halts and accepts in time O(24n), where n =
⌊lg r⌋ + 1, if and only if r ∈ A.

The proof of Lemma 4.7 is based on the simple observation that each diamond
is finite, and once a tile is placed at some point, it cannot be removed. The
time hierarchy theorem [9] can be employed to show that there exists a set
A ∈ N such that A ∈ DTIME (25n)−DTIME (24n). Lemma 4.7 with D = DA

is sufficient to prove the following theorem.

Theorem 4.8 There is a decidable set D ⊆ Z2 that does not weakly self-
assemble.

It is easy to see that if A ⊆ N, then DA ∈ DTIME
(

2linear
)

because you can
simulate self-assembly with a Turing machine. Is it possible to do better?
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Open Problem 4.9 [12] Is there a polynomial-time decidable set D ∈ Z2

such that D does not weakly self-assemble?

4.3 Computably Enumerable Sets

The characterization of decidable sets in terms of weak self-assembly [15] is
closely related to the characterization of computably enumerable sets in terms
of weak self-assembly due to Lathrop, Lutz, Patitz and Summers [12].

Let f : Z+ → Z+ be a function such that for all n ∈ N, f(n) ≥ n and
f(n) = O (n2). For each set A ⊆ Z+, the set

XA = {(f(n), 0) | n ∈ A}

is thus a straightforward representation of A as a set of points on the positive
x-axis. The first main result of [12] is stated as follows.

Theorem 4.10 If f : Z+ → Z+ is a function as defined above, then, for all
A ⊆ Z+, A is computably enumerable if and only if the set XA = {(f(n), 0) |
n ∈ A} self-assembles.

The reverse direction of the proof follows easily from Lemma 4.4. To prove the
forward direction, it is sufficient to exhibit, for any TM M , a directed TAS
TM that correctly simulates M on all inputs x ∈ Z+ in Z2. A snapshot of the
main construction of [12] is shown in Figure 7.

Fig. 7. Simulation of M on every input x ∈ N. Notice that M(2) halts - indicated
by the black tile along the x-axis.
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Intuitively, TM self-assembles a “gradually thickening bar” immediately below
the positive x-axis with upward growths emanating from well-defined intervals
of points. For each x ∈ Z+, there is an upward growth, in which a modifed
wedge construction carries out a simulation of M on x. If M halts on x, then
(a portion of) the upward growth associated with the simulation of M(x)
eventually stops, and sends a signal down along the right side of the upward
growth via a one-tile-wide-path of tiles to the point (f(x), 0), where a black
tile is placed.

Note that Theorem 4.3 is exactly Theorem 4.10 with “computably enumer-
able” replaced with “decidable,” and f(n) = n.

Open Problem 4.11 [12] Does Theorem 4.10 hold for any f such that
f(n) = O(n)? We conjecture that the answer is “no”, and that the construc-
tion of [12] is effectively optimal. If the answer to this question is “yes,” then
the proof would require a novel construction which manages to provide an in-
finite amount of space for each of an infinite number of perhaps non-halting
computations in a more compact way than [12].

5 Conclusion

This paper surveyed a subset of recent theoretical results in algorithmic self-
assembly relating to the self-assembly of infinite structures in the TAM. Specif-
ically, in this paper we reviewed impossibility results with respect to the
strict/weak self-assembly of various classes of discrete self-similar fractals [16],
impossibility results for the weak self-assembly of exponential-time decidable
sets [12], characterizations of particular classes of languages in terms of weak
self-assembly [12,15], and the strict self-assembly of fractal-like structures. Fi-
nally, we believe that the benefit of continued research along these lines has
the potential to shed light on the elusive relationship between geometry and
computation.

References

[1] L. Adleman, Towards a mathematical theory of self-assembly, Tech. report,
University of Southern California, 2000.

[2] Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David
Kempe, Pablo Moisset de Espanés, and Paul W. K. Rothemund, Combinatorial
optimization problems in self-assembly, Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, 2002, pp. 23–32.

12



[3] Leonard M. Adleman, Jarkko Kari, Lila Kari, and Dustin Reishus, On the
decidability of self-assembly of infinite ribbons, Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002, pp. 530–537.

[4] Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kau, and Robert T.
Schweller, Complexities for generalized models of self-assembly, Proceedings of
ACM-SIAM Symposium on Discrete Algorithms, 2004.

[5] Florent Becker, Ivan Rapaport, and Eric Rémila, Self-assemblying classes of
shapes with a minimum number of tiles, and in optimal time, FSTTCS, 2006,
pp. 45–56.

[6] Ho-Lin Chen and Ashish Goel, Error free self-assembly with error prone tiles,
Proceedings of the 10th International Meeting on DNA Based Computers, 2004.

[7] Qi Cheng, Ashish Goel, and Pablo Moisset de Espanés, Optimal self-assembly
of counters at temperature two, Proceedings of the First Conference on
Foundations of Nanoscience: Self-assembled Architectures and Devices, 2004.

[8] D. Doty, X. Gu, J.H. Lutz, E. Mayordomo, and P. Moser, Zeta-Dimension,
Proceedings of the Thirtieth International Symposium on Mathematical
Foundations of Computer Science, Springer-Verlag, 2005, pp. 283–294.

[9] J. Hartmanis and R. E. Stearns, On the computational complexity of algorithms,
Transactions of the American Mathematical Society 117 (1965), 285–306.

[10] Ming-Yang Kao and Robert Schweller, Reducing tile complexity for self-
assembly through temperature programming, Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), Miami, Florida,
Jan. 2006, pp. 571-580, 2007.

[11] Ming-Yang Kao and Robert T. Schweller, Randomized self-assembly for
approximate shapes., ICALP (1) (Luca Aceto, Ivan Damgrd, Leslie Ann
Goldberg, Magns M. Halldrsson, Anna Inglfsdttir, and Igor Walukiewicz, eds.),
Lecture Notes in Computer Science, vol. 5125, Springer, 2008, pp. 370–384.

[12] James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers,
Computability and complexity in self-assembly, Proceedings of The Fourth
Conference on Computability in Europe (Athens, Greece, June 15-20, 2008),
2008.

[13] James I. Lathrop, Jack H. Lutz, and Scott M. Summers, Strict self-assembly of
discrete Sierpinski triangles, Theoretical Computer Science. To appear.

[14] Ashish Goel Leonard Adleman, Qi Cheng and Ming-Deh Huang, Running time
and program size for self-assembled squares, STOC ’01: Proceedings of the
thirty-third annual ACM symposium on Theory of computing (New York, NY,
USA), ACM, 2001, pp. 740–748.

[15] Matthew J. Patitz and Scott M. Summers, Self-assembly of decidable sets,
Proceedings of The Seventh International Conference on Unconventional
Computation (Vienna, Austria, August 25-28, 2008), 2008.

13



[16] , Self-assembly of discrete self-similar fractals (extended abstract),
Proceedings of The Fourteenth International Meeting on DNA Computing
(Prague, Czech Republic, June 2-6, 2008). To appear., 2008.

[17] John H. Reif, Molecular assembly and computation: From theory to experimental
demonstrations, Proceedings of the Twenty-Ninth International Colloquium on
Automata, Languages and Programming, 2002, pp. 1–21.

[18] Paul W. K. Rothemund, Theory and experiments in algorithmic self-assembly,
Ph.D. thesis, University of Southern California, December 2001.

[19] Paul W. K. Rothemund and Erik Winfree, The program-size complexity of self-
assembled squares (extended abstract)., STOC, 2000, pp. 459–468.

[20] Paul W.K. Rothemund, Nick Papadakis, and Erik Winfree, Algorithmic self-
assembly of DNA Sierpinski triangles, PLoS Biology 2 (2004), no. 12.

[21] David Soloveichik and Erik Winfree, Complexity of compact proofreading
for self-assembled patterns, The eleventh International Meeting on DNA
Computing, 2005.

[22] , Complexity of self-assembled shapes, SIAM Journal on Computing 36,
2007, pp. 1544–1569.

[23] Thomas LaBean Urmi Majumder, Sudheer Sahu and John H. Reif, Design and
simulation of self-repairing DNA lattices, DNA Computing: DNA12, Lecture
Notes in Computer Science, vol. 4287, Springer-Verlag, 2006.

[24] Hao Wang, Proving theorems by pattern recognition – II, The Bell System
Technical Journal XL (1961), no. 1, 1–41.

[25] , Dominoes and the AEA case of the decision problem, Proceedings
of the Symposium on Mathematical Theory of Automata (New York, 1962),
Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y., 1963,
pp. 23–55.

[26] Erik Winfree, Simulations of computing by self-assembly, Tech. Report
CaltechCSTR:1998.22, California Institute of Technology.

[27] , Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of
Technology, June 1998.

[28] Erik Winfree and Renat Bekbolatov, Proofreading tile sets: Error correction
for algorithmic self-assembly., DNA (Junghuei Chen and John H. Reif, eds.),
Lecture Notes in Computer Science, vol. 2943, Springer, 2003, pp. 126–144.

14


