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Abstract. In this tutorial, we give a brief introduction to the field of
tile-based algorithmic self-assembly. We begin with a description of Win-
free’s abstract Tile Assembly Model (aTAM) and a few basic exercises
in designing tile assembly systems. We then survey a series of results in
the aTAM. Next, we introduce the more experimentally realistic kinetic
Tile Assembly Model (kTAM) and provide an exercise in error correction
within the kTAM, then an overview of kTAM results . We next introduce
the 2-Handed Assembly Model (2HAM), which allows entire assemblies
to combine with each other in pairs, along with an exercise in developing
a 2HAM system, and then give overviews of a series of 2HAM results.
Finally, we briefly introduce a wide array of more recently developed
models and discuss their various tradeoffs in comparison to the aTAM
and each other.

1 Introduction

Self-assembly is the process by which a collection of relatively simple
components, beginning in a disorganized state, spontaneously and with-
out external guidance coalesce to form more complex structures. The
process is guided by only local interactions between the components,
which typically follow a basic set of rules. Despite the seemingly simplis-
tic nature of self-assembly, its power can be harnessed to form structures
of incredible complexity and intricacy. In fact, self-assembling systems
abound in nature, resulting in everything from the delicate crystalline
structure of snowflakes to many of the structurally and functionally var-
ied components of biological systems.
Beyond the purely mathematically interesting properties of self-assembling
systems, such systems have been recognized as an excellent template
for the fabrication of artificial structures on the nanoscale. In order
to precisely manipulate matter on the scale of individual atoms and
molecules, several artificial self-assembling systems have been designed.
Among these is the Tile Assembly Model introduced by Erik Winfree in
his 1998 PdD thesis [44]. Formulated in two basic versions, the abstract
Tile Assembly Model (aTAM) and the kinetic Tile Assembly Model
(kTAM), it was based on a cross between the theoretical study of Wang
tiles [43] (flat squares with labels on their edges) and novel DNA com-
plexes being synthesized within Ned Seeman’s laboratory [39]. The aTAM
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provides a more high-level abstraction which ignores the possibility of er-
rors and provides a framework for theoretical studies of the mathematical
boundaries to the powers of such systems. The kTAM, on the other hand,
injects more of the physical reality of the chemical kinetics into the model
and allows for the study of the causes of errors and potential mechanisms
for detecting, preventing, and/or correcting them.
We will first introduce the aTAM, giving relevant definitions and example
aTAM systems. Next we will present a series a basic exercises in designing
systems, intended to foster an interactive environment that provides the
audience with a more firm understanding of the model. After this we will
present a quick survey of results based on the aTAM, roughly sketching
out what work has already been done and pointing out several open
avenues for future research.
In the second main portion of the tutorial, we will introduce the kTAM
and provide an explanation of relevant definitions and formulas. We will
then conduct an interactive exercise in designing a kTAM system for
basic error prevention. Next we will survey a series of result based on
the kTAM to provide of picture of the progress that has been made. We
will then introduce the 2-Handed Assembly Model (2HAM), in which,
rather than requiring seeded assemblies which can grow only one tile at a
time, arbitrarily large assemblies are allowed to combine with each other
two at a time. We will conduct an exercise in designing a 2HAM system
and then discuss a variety of 2HAM results, emphasizing especially those
which provide comparisons and contrasts with the aTAM.
The third main portion of the tutorial will be comprised of very high-
level introductions to a wide array of newer, derivative models. Such
models have been introduced for a variety of reasons: to provide greater
resilience to errors, to potentially provide more feasible laboratory im-
plementations, to overcome theoretical limitations of the base models,
to more faithfully mimic the behavior of given natural (especially bio-
logical) self-assembling systems, or simply to more fully explore the vast
landscape of alternatives. Examples of such models include: tempera-
ture and concentration programming, the Staged Assembly Model, the
Geometric Tile Assembly Model, and the Signal passing Tile Assembly
Model.
The goal is to provide participants with a solid understanding of the
original Tile Assembly Model, and then a brief overview of several newer
models of tile-based self-assembly, as well as a high-level survey of the
current state of results and open questions. Special care will be taken to
try to show connections between results across models as well as potential
relationships with other areas of research, in the hope of providing a basis
for future projects linking ideas and results from self-assembly to those
of various other areas of theoretical research.

2 Preliminaries and notation

In this section we provide a set of definitions and conventions that are
used throughout this paper.
We work in the 2-dimensional discrete space Z2. Define the set U2 =
{(0, 1), (1, 0), (0,−1), (−1, 0)} to be the set of all unit vectors in Z2. We
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also sometimes refer to these vectors by their cardinal directions N , E,
S, W , respectively. All graphs in this paper are undirected. A grid graph
is a graph G = (V,E) in which V ⊆ Z2 and every edge {a, b} ∈ E has
the property that a− b ∈ U2.

Intuitively, a tile type t is a unit square that can be translated, but not
rotated, having a well-defined “side u” for each u ∈ U2. Each side u of
t has a “glue” with “label” labelt(u)–a string over some fixed alphabet–
and “strength” strt(u)–a nonnegative integer–specified by its type t.
Two tiles t and t′ that are placed at the points a and a + u respec-
tively, bind with strength strt (u) if and only if (labelt (u) , strt (u)) =
(labelt′ (−u) , strt′ (−u)).

In the subsequent definitions, given two partial functions f, g, we write
f(x) = g(x) if f and g are both defined and equal on x, or if f and g are
both undefined on x.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply
as an assembly when T is clear from the context, is a partial function
α : Z2 99K T defined on at least one input, with points x ∈ Z2 at which
α(x) is undefined interpreted to be empty space, so that dom α is the set
of points with tiles. We write |α| to denote |dom α|, and we say α is finite
if |α| is finite. For assemblies α and α′, we say that α is a subassembly
of α′, and write α v α′, if dom α ⊆ dom α′ and α(x) = α′(x) for all
x ∈ dom α.

2.1 Simulation Software

Throughout this tutorial, the Iowa State University Tile Assembly Sim-
ulator (ISU TAS) [32] will be used to present examples as well as to
work on the exercises. The simulator and its source code are available
online at http://www.self-assembly.net and it can be compiled for
Windows, Mac OS, and linux. A brief tutorial on the use of the simu-
lator will be provided during the tutorial, and more documentation can
be downloaded along with the software.

3 The abstract Tile Assembly Model (aTAM)

3.1 Model definition

We now give a brief intuitive sketch of the abstract TAM. See [26,37,38,
44] for other developments of the model.

Given a set T of tile types, an assembly is a partial function α : Z2 99K T .
An assembly is τ -stable if it cannot be broken up into smaller assemblies
without breaking bonds of total strength at least τ , for some τ ∈ N.

Self-assembly begins with a seed assembly σ and proceeds asynchronously
and nondeterministically, with tiles adsorbing one at a time to the ex-
isting assembly in any manner that preserves τ -stability at all times. A
tile assembly system (TAS) is an ordered triple T = (T, σ, τ), where T
is a finite set of tile types, σ is a seed assembly with finite domain, and
τ ∈ N. In this paper we deal exclusively with tile assembly systems in

http://www.self-assembly.net
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which τ = 2. A generalized tile assembly system (GTAS) is defined simi-
larly, but without the finiteness requirements. We write A[T ] for the set
of all assemblies that can arise (in finitely many steps or in the limit)
from T . An assembly α ∈ A[T ] is terminal, and we write α ∈ A�[T ], if
no tile can be τ -stably added to it. It is clear that A[T ] ⊆ A�[T ].
An assembly sequence in a TAS T is a (finite or infinite) sequence α =
(α0, α1, . . .) of assemblies in which each αi+1 is obtained from αi by the
addition of a single tile. The result res(α) of such an assembly sequence
is its unique limiting assembly. (This is the last assembly in the sequence
if the sequence is finite.) The set A[T ] is partially ordered by the relation
−→ defined by

α −→ α′ iff there is an assembly sequence α = (α0, α1, . . .)

such that α0 = α and α′ = res(α).

We say that T is directed (a.k.a. deterministic, confluent, produces a
unique assembly) if the relation−→ is directed, i.e., if for all α, α′ ∈ A[T ],
there exists α′′ ∈ A[T ] such that α −→ α′′ and α′ −→ α′′. It is easy to
show that T is directed if and only if there is a unique terminal assembly
α ∈ A[T ] such that σ −→ α.
In general, even a directed TAS may have a very large (perhaps un-
countably infinite) number of different assembly sequences leading to its
terminal assembly. This seems to make it very difficult to prove that a
TAS is directed. Fortunately, Soloveichik and Winfree [41] have recently
defined a property, local determinism, of assembly sequences and proven
the remarkable fact that, if a TAS T has any assembly sequence that
is locally deterministic, then T is directed. Intuitively, an assembly se-
quence α is locally deterministic if (1) each tile added in α “just barely”
binds to the existing assembly; (2) if a tile of type t0 at a location m and
its immediate “output-neighbors” are deleted from the result of α, then
no tile of type t 6= t0 can attach itself to the thus-obtained configuration
at location m; and (3) the result of α is terminal.
A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, τ)
and a set B ⊆ T such that α−1(B) = X holds for every terminal assembly
α ∈ A�[T ]. Essentially, weak self-assembly can be thought of as the
creation of a pattern of tiles from B (usually taken to be a unique “color”)
on a possibly larger “canvas” of un-colored tiles.
A set X strictly self-assembles if there is a TAS T for which every as-
sembly α ∈ A�[T ] satisfies dom α = X. Essentially, strict self-assembly
means that tiles are only placed in positions defined by the shape. Note
that if X strictly self-assembles, then X weakly self-assembles. (Let all
tiles be in B.)
Tiles are often depicted as squares whose various sides contain 0, 1, or
2 attached black squares, indicating whether the glue strengths on these
sides are 0, 1, or 2, respectively. Thus, for example, a tile of the type
shown in Figure 1 has glue of strength 0 on the left and bottom, glue of
color ‘a’ and strength 2 on the top, and glue of color ‘b’ and strength 1
on the right. This tile also has a label ‘L’, which plays no formal role but
may aid our understanding and discussion of the construction.
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a

L b

Fig. 1: An example tile type.

3.2 Examples and exercises

Here we present a basic example of an aTAM system, followed by a few
suggested exercises in designing aTAM systems.

Example: a binary counter The aTAM is capable of Turing uni-
versal computation, so our first example will consist of a system which
self-assembles a simple computation, namely an infinite binary counter.
Figure 2a shows three tile types which will be used to form the boundary
of the counter on its bottom and right sides. Figure 2b shows the addi-
tional 4 tile types needed to perform the actual counting and to display,
via their labels, the current binary number. We will define our binary
counter tile assembly system as T = {T, (S, (0, 0)), 2}, that is, it will
consist of tile set T which will contain all 7 of the tile types defined in
Figure 2, it will have a seed consisting of a single copy of a tile of type S
placed at position (0, 0), and it will be a temperature 2 system (meaning
that free tiles need to bind with at least a single strength-2 glue or two
individual strength-1 glues on tiles within an existing assembly in order
to attach to that assembly).

R

B S
0

B B B

1

R
R
R

(a) The tile types which form
the border of the counter

0

1 0 1

1

1

0 1 0

1

0

0 0 0

0

1

0 1 1

0

(b) The “rule” tile
types which compute
and represent the val-
ues of the counter

Fig. 2: A tile set which, when seeded with the S tile in a temperature 2 system
self-assembles into an infinite binary counter.
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Figure 3 shows a small portion of the infinite assembly produced by T .
In Figure 3a, the beginning of the formation of the border is shown.
Starting from S, border tiles R can attach and form an infinite column
upward using their strength-2 glues, and B tiles can do the same to the
left. No rule tiles can attach until there are 2 strength-1 bonds correctly
positioned for them to bind to. Figure 3a also shows the first rule tile
which is about to attach into the corner. In Figure 3b the bottom-right
square of width and height 6 of the infinite square assembly is shown.
Each horizontal row represents a single binary number in the counter,
read from left to right (but which will have an infinite number of lead-
ing 0’s to the left), and each row represents a binary number exactly
one greater than the row immediately beneath it. The computation is
performed by the rule tiles which, essentially, receive as “input” a bit
from beneath (representing the current value of that column) and a bit
from the right (representing the carry bit being brought in). The labels
and the northern glues of the rule tiles simply represent the (possibly
new) bit to be represented by that column (based on the two inputs),
and the western glue represents the resulting carry bit. The computation
is possible because of the “cooperation” between two tiles providing in-
put, enforced by the temperature = 2 parameter of the system and the
single-strength glues of the rule tiles.
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B B B
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B B B

0

B B B
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R
R
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1

R
R
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1

R
R
R

1

0 1 1

0

0

B B B

1

R
R
R

(a) Border tiles can attach to the seed
and form arbitrarily long bottom and
right borders. Rule tiles can bind only
once two “inputs” are available.
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0 0 0

0

0

1 0 1

1

1

0 1 1

0

0

0 0 0
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(b) A view of the 6×6 square of tiles at
the bottom right corner of the assembly
produced by the binary counter. Note
that the terminal assembly would ac-
tually continue infinitely far up and to
the left.

Fig. 3: Portions of the assembly formed by the binary counter.

Exercise: performing the XOR operation The goal of this ex-
ercise is to gain experience developing a very basic set of tiles which
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can perform a simple logical operation on two input bits. Similar to the
binary counter, we will assume an infinite assembly bounded on the bot-
tom and right by border tiles. These tiles are shown in Figure 4. Assume
that a tile of type S will be placed at location (0, 0) to serve as the seed.
Create the set of additional tiles required to take single bit inputs from
each of their south and east sides and display as their label the XOR
of those two bits, while outputting proper bit values to their north and
west.

R

B S
1

B B B

1

R
R
R

Fig. 4: The border tiles for the XOR exercise

Assuming that all border tiles and tiles with labels equal to 1 are colored
red and all other tiles are colored white, what pattern will be displayed
on the surface of the assembly created by this system? In other words,
what pattern does this system weakly self-assemble?

Exercise: simulating a Turing machine As shown in [44], the
aTAM is capable of Turing universal computation. For this exercise, we
will explore how, given a particular Turing machine M and a binary
string b as input, to design a tile assembly system T which simulates
M(b).
Let M be an extremely basic Turing machine whose state diagram is
shown in Figure 5 andM = (Q,Σ, Γ, δ, q0, qA, qR), whereQ = (q0, q1, qA, qR)
is the set of states, Σ = {0, 1} is the input alphabet, Γ = {0, 1, } is the
tape alphabet, δ is the transition function as shown by Figure 5, q0 is
the start state, qA is the accept state, and qR is the reject state.
Goal: Design a tile set which will allow M to be simulated on a specified
input.
Tips:

1. Represent M ’s tape as a row of tiles, with each tile corresponding
to a single cell of the tape

2. The cell of the tape which represents the location where M ’s read
head is located will need to be represented by a tile type which in-
cludes information about not only the tape cell, but also M ’s current
state

3. Starting with a row of tiles which represents the initial tape and
state of M , represent each successive computation step as a row
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q0 q1 qA1/1,R 1/1,R

0/0,R 0/0,R

qR

_/_,R _/_,R

Fig. 5: The state diagram for Turing machine M used in the exercise

of tiles immediately above (which results in a single row of tiles
for each computational step and a terminal assembly depicting the
entire computational history of M(b), beginning from the bottom
and moving upward row by row)

4. Assume thatM is designed so that expects to start with its tape head
on the leftmost tape cell of the input, the tape is one-way-infinite-
to-the-right, and that M will never attempt to move its head left
while on the leftmost tape cell

For this exercise, let the input to M be b = 010010.

3.3 Survey of aTAM results

Results in the aTAM can often be mapped into two groups: 1. What
can or can’t self-assemble?, and 2. How hard is it to self-assemble a par-
ticular object? Thus, sometimes the interest lies strictly in showing that
something is possible or impossible, but often, even though we may know
that something is possible, it turns out to be interesting to determine
how efficiently it can be done. The most common measure of efficiency
is the number of unique tile types required. Finding optimally small tile
sets which self-assemble into targeted shapes is of great interest, both
theoretically and also for the sake of making potential laboratory imple-
mentations more feasible. Another common measure is the scale factor.
Oftentimes it is, perhaps counterintuitively, possible to design tile sets
with many fewer individual kinds of tiles which can self-assemble a target
shape at a blown up scaling factor than it is to self-assemble the same
shape without scaling it up. Now we provide a quick overview of a series
of results in the aTAM which seek to answer these and other questions.

n×n squares Since Winfree showed in his thesis [44] that the aTAM
is computationally universal, we know that we can algorithmically direct
the growth of assemblies. This ability allows for not only the creation of
complicated and precise shapes, but also often for them to be created
very tile type efficiently (i.e. they require small tile sets - those with
few numbers of unique tile types). A benchmark problem for tile-based
self-assembly is that of assembling an n × n square since this requires
that the tiles somehow compute the value of n and thus “know when to
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stop” at the boundaries. In [38] they showed that binary counters can
be used to guide the growth of squares and that thereby it is possible to
self-assemble an n× n square using O(logn) tile types.
Figure 6 shows a high-level overview of the construction. Essentially,
logn tile types are required so that each bit of (a number related to)
the dimension n can be encoded with a unique tile type. The seed is
taken to be one of those tile types so that the entire row of them forms
attached to the seed. Above that, a fixed-width binary counter (which is
composed of the same tile types for all n) begins counting upward from
that value until it reaches its maximum possible value (i.e. all 1’s), at
which point it terminates upward growth. With the vertical bar repre-
senting the counter in place, a very basic constant (for all n) set of tiles
can be used to “pass a signal” along a diagonal path which is limited
by the height (and width) of the counter, and to finally fill in below the
diagonal to finish the formation of the square.

Start value for counter

Binary counter

Filler tiles

Max value for counter

Seed tile

Fig. 6: The high level schematic for building an n× n square using O(log n) tile
types

In [2], the previous construction for squares was improved to requiring

the slightly fewer O
(

logn
log logn

)
tile types, which was also shown to be a

matching lower bound (for almost all n).

Finite shapes In order to build any given finite shape, it is trivial
to define a tile assembly system which will assemble it: simply create a
unique tile type for every point in the shape so that the glue between
each tile and each neighbor is unique to that pair in that location. Obvi-
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ously, however, this is the worst possible construction in terms of tile type
complexity. In [41] it was shown that the tile type complexity for a finite
shape S is bounded above and below by the Kolmogorov complexity of
the shape, as long as the shape can be scaled up. For the upper bound
they provide a construction which uses, in each c× c square which repre-
sents a single point in the original shape (where c is dependent upon S),
a Turing machine to read the compressed definition of the shape (from
which the tile complexity arises) and then form output sides to that c×c
square which initiate the growth of the necessary squares representing
neighboring locations.

Computations Beyond just the relatively simple simulation of a Tur-
ing machine on a single input, there have been additional results explor-
ing the power of computation within the aTAM. In [35] it was shown that
a set of natural numbers D ⊆ N is decidable if and only if D × {0} and
Dc × {0} weakly self-assemble. That is, the canonical representations of
D and the complement of D weakly self-assemble. For D×{0} to weakly
self-assemble, at every point along the x-axis such that the value of the
x coordinate is contained in D, the tile placed at that location is colored
black. All other locations remain either untiled or receive a tile which is
not black.
The construction for [35] is a relatively straightforward “stacking” of
Turing machine simulations, so that a given Turing machine M which
decides the language in question is first simulated on input 0, then imme-
diately above that M(1) is simulated, etc. As each simulation completes,
the “answer” of whether or not that input is in the language is propa-
gated via a one-tile-wide path down the side of the previous computations
to the x-axis where the appropriately colored tile attaches.
In [25], the more complicated question of whether a similar result applied
to computably enumerable languages was answered in the affirmative. It
was shown that a set of natural numbers D ⊆ N is computably enumer-
able if and only if the set XA = {(f(n), 0)|n ∈ D} weakly self-assembles
(where f is a roughly quadratic function). For that construction, since
any Turing machine M used to determine membership in D cannot be
guaranteed to halt for non-members, the simple “stacking” construction
cannot work. Instead, the construction performs the infinite series of
computations side-by-side, spread out along the x-axis (hence the need
for f), providing a potentially infinite amount of tape space for each
computation while ensuring that none of them collide and a path to the
relevant point on the x-axis always remains available for cases in which
a black tile must be placed. The space reserved for each computation is
achieved by a scheme in which each computation proceeds with each row
simply copying the row beneath it for most rows, and then with a fre-
quency half that of the computation to its immediate left, a row performs
a new step of the computation. This, combined with a unique and well-
defined slope for the assembly representing each computation ensures
that the potentially infinite space requirements for every computation
can be assured.
Also in [25], it was shown there there exist decidable sets of pairs of
integers, i.e. D ⊆ Z×Z, which do not weakly self-assemble in the aTAM.
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This proof leverages the fact that space is not reusable in tile assembly
and that there exist sets for which deciding membership requires too
much space to allow each point in an infinite set to be accurately tiled.

Fractals - impossibility and approximation As it has been
shown that any finite shape can self-assemble in the aTAM, when looking
for shapes which are impossible to self-assemble it is necessary to look
at infinite shapes. Due to their complex, aperiodic nature, discrete self-
similar fractals have provided an interesting set of shapes to explore.
In [26], it was shown that it is impossible for the discrete Sierpinski
triangle to strictly self-assemble in the aTAM (at any temperature). The
proof relies on the fact that at each successive stage, as the stages of the
fractal structure grow larger, each stage is connected to the rest of the
assembly by a single tile. Since there are an infinite number of stages, all
of different sizes, it is impossible for the single tiles connecting each of
them to the assembly to transmit the information about how large the
newly forming stage should be, and thus it is impossible for the fractal
to self-assemble. In [34] this proof technique was extended to cover a
class of similar fractals. It is conjectured by the author that no discrete
self-similar fractal strictly self-assembles in the aTAM, but that remains
an open question.
Despite the impossibility of strictly self-assembling the discrete Sierpinski
triangle, in [26] it was shown that an approximation of that fractal, which
the authors called the fibered Sierpinski triangle, does in fact strictly self-
assemble. The fibered version is simply a rough visual approximation of
the original but with one additional row and column of tiles added to
each subsequent stage of the fractal during assembly. Not only does the
approximation look similar to the original, it was shown to have the
same fractal (or zeta) dimension. In [34], the fibering construction was
extended to an entire class of fractals. Along a similar line, in [28] it was
shown that a different type of approximation of the Sierpinski triangle
strictly self-assembles. This approximation also retains the same approx-
imate appearance and fractal dimension, but instead of “spreading” out
successive stages of the fractal with fibering, it utilizes a small portion
of each hole in the definition of the shape. In [24], this construction was
further extended to an entire class of fractals.

Temperature 1 To this point, all examples, exercises, and results dis-
cussed in this paper have been based upon aTAM systems where the
temperature is 2. At temperature 2 and above, it is possible to design
systems which make use of a feature commonly referred to as cooperation
in which the correct and prior placement of two tiles in specific relative
positions is required before the attachment of a third tile is possible. This
cooperative behavior is what is commonly attributed with providing the
aTAM with its ability to perform computations, and which (apparently)
disappears at temperature = 1. Thus, for aTAM systems whose temper-
ature is 1, it is conjectured that both: 1. Turing universal computation
by a deterministic aTAM system is impossible, and 2. any aTAM system
which deterministically produces an n×n square requires a minimum of
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2n− 1 tile types. Partial progress toward the proof of these conjectures
was achieved in [18], but the general problem remains open.
Despite the previous conjectures about the aTAM at temperature 1,
in [12] it was shown that, by slightly relaxing the requirements, Turing
universal computation is in fact possible. Namely, if the assembly is al-
lowed to proceed into the third-dimension, utilizing only 2 planes, or if
the computation is allowed to prematurely terminate with some arbitrar-
ily low probability, then a universal Turing machine can be simulated at
temperature 1.

Intrinsic universality While an aTAM system can be designed to
simulate an arbitrary Turing machine, another interesting question was
inspired by the notion of intrinsic universality in cellular automata: Is
there a single tile set which can be used to simulate an arbitrary aTAM
system? Essentially, if the tiles of this “universal” tile set could be ar-
ranged to form a seed structure such that that structure contains an
encoding of some other aTAM system, say T , could additional copies of
tiles from the universal tile set attach to grow into an assembly which
simulates the system T ? Of course, the simulation will be a scaled up
version of the original system, but it must be the case that every behav-
ior that T is capable of, the simulating system is also capable of. It turns
out that the answer to that question is “yes”, as was shown in [17]. In
fact, it was shown that there exists a tile set which, when appropriately
seeded and at temperature 2, can simulate the behavior of any aTAM
system at any temperature.

Verification Several ‘verification problems” (answering the question of
whether or not a given system has a specific property) have been studied
in relation to the aTAM, and characterized by their complexity. Among
them are:

1. Does aTAM system T uniquely produce a given assembly? This was
shown to require time polynomial in the size of the assembly and
tile set in [3].

2. Does aTAM system T uniquely produce a given shape? This was
shown to be in co-NP-complete for temperature 1 in [6] and co-NP-
complete for temperature 2 in [4].

3. Is a given assembly terminal in aTAM system T ? This was shown
to require time linear in the size of the assembly and tile set in [3]

4. Given a aTAM system T , does it produce a finite terminal assembly?
This was shown to be uncomputable in [6].

5. Given a aTAM system T , does it produce an infinite terminal as-
sembly? This was shown to be uncomputable in [6].

PATS problem and tile set generation In order to produce a
surface with a complex template for potentially guiding the attachment
of functional materials, an interesting problem in tile-based self-assembly
is the Patterned self-Assembly Tile set Synthesis (PATS) problem. The
PATS problem is concerned with finding the minimal tile set which will
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self-assemble into a given 2-D pattern of colors (where tile types are
assumed to be assigned colors). Introduced in [29], in [21] an exhaustive
branch-and-bound algorithm was presented which works well for finding
exact solutions to patterns of sizes up to 6×6, and approximate solutions
for larger patterns. In [27] the previous algorithm was modified to be
more efficient (but still requires exponential time).

4 The kinetic Tile Assembly Model (kTAM)

In practice, DNA self-assembly entails a more complicated process than
the simple model described by the aTAM, and therefore a different model
is required for a realistic simulation of this process. The kinetic Tile As-
sembly Model(kTAM) [44] is such a model, and considers the reversible
nature of self-assembly, factoring in the rates of association and dissoci-
ation of basic molecular elements (so-called monomers, or tiles) within
the original framework provided by the aTAM. The kTAM describes the
dynamics of assembly according to an inclusive set of reversible chemical
reactions: A tile can attach to an assembly anywhere that it makes even
a weak bond, and any tile can dissociate from the assembly at a rate
dependent on the total strength with which it adheres to the assembly.

4.1 Model definition

In the kTAM [20, 44, 46], a monomer tile can be added to the assem-
bly with some association (forward) rate, or removed from the assembly
with some dissociation (reverse) rate. Similar to the aTAM, only the
singleton tiles are allowed to attach to, and in this case detach from, a
seeded assembly. These rates are denoted by rf and rr,b, respectively. At
every available site on the perimeter of an assembly (i.e. the frontier),
every possible monomer tile can associate to the assembly, regardless of
whether the monomer is correct or not (i.e. whether or not the glues
match). The forward rate depends only on the monomer tile concentra-
tion, [monomer ]:

rf = kf [monomer] = kfe
−Gmc (1)

where Gmc > 0 is the non-dimensional entropic cost of associating to
an assembly. In the kTAM, for simplicity it is assumed that tile concen-
trations remain constant at [monomer] = e−Gmc . Therefore, since the
forward rate constant kf is a constant, the entire forward rate rf is also
constant.
The reverse rate is dependent upon the binding strength b of the tile to
the assembly, and in fact the relationship is exponential:

rr,b = kr,b = kfe
−bGse (2)

where Gse is the non-dimensional free energy cost of breaking a single
bond and b is the number of “single-strength” bonds the tile has made.
The kTAM’s equivalent to the aTAM’s temperature τ parameter is the
ratio of the concentration of the tiles to the strength of their individual
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bonds, or Gmc/Gse. Because the kTAM allows for the binding of tiles
whether or not their glues correctly match those on the boundary of
a growing assembly, bindings which would be considered errors in the
aTAM are possible. By lowering the ratio ofGmc/Gse, which is intuitively
similar to lowering the temperature τ threshold in the aTAM, assembly
happens more quickly but is more error prone. If the number of correct
bonds that a tile has with an assembly, b, is less than τ , then a tile is
more likely to detach than to attach.
Because the kTAM accurately models the behavior of DNA based tile
self-assembly in the laboratory, most especially the common types of
errors observed, it has provided an excellent foundation for work in error
prevention and correction.

4.2 Error types

In order to discuss the types of errors that can occur during self-assembly
in the kTAM, we will refer to an example system which is designed to
weakly self-assembly the Sierpinski triangle. See Figure 7 for details.
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(b) A view of the 9 × 9 square of
tiles at the bottom right corner of
the weakly self-assembled Sierpinski
triangle. Note that the terminal as-
sembly would actually continue in-
finitely far up and to the left.

Fig. 7: Details of the Sierpinski triangle example

The errors that occur during assembly can be divided into three gen-
eral types: 1. growth errors (or mismatch errors), 2. facet errors, and 3.
and nucleation errors [20]. A growth error, an example of which can be
seen in Figure 8, occurs when one or more sides of a tile which binds to
an assembly have glues which do not match the adjacent glues (called
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glue mismatches). Such a tile may bind with insufficient strength to
remain permanently bound, but before it has an opportunity to dissoci-
ate, a previously unoccupied neighboring position may be filled by a tile
which binds without mismatches, thus resulting in an assembly where
every tile has sufficient strength to remain permanently attached despite
the mismatch. This essentially “locks” the incorrect tile into place and
potentially allows assembly to proceed with an incorrectly placed tile
which may cause further deviations from the desired shape or pattern.
Somewhat similarly, a facet error also occurs on the edge of a growing
assembly. A facet error (see Figure 9 for an example) again occurs when
a tile binds with insufficient strength for permanent attachment (but this
time with no mismatches), and again is locked into place by a subsequent
tile addition. The third type of errors, nucleation errors, occur when tiles
aggregate with each other without any attachment to the seed structure,
and thus “seed” a new type of assembly.
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(c) Before the erroneously
attached tile can detach,
another tile attaches with 2
matching bonds so that all
tiles are now connected by
two correctly formed bonds

Fig. 8: Example growth error in the kTAM

4.3 Exercise: error suppression via block replacement

In [46], the authors demonstrated a technique to reduce growth errors
which they called proofreading. In proofreading, individual tile types are
replaced by n× n blocks of unique tile types such that the perimeter of
the n×n block formed to represent a given tile type from the original set
still represents the same glues. (New glues are created for the interior of
the block which are specific to the tile types composing each particular
block.) However, those original glues are now split into n separate glues.
The goal is to force multiple errors to occur before an incorrect n × n
block can fully form, as opposed to the single error which would allow the
analogous incorrect tile from the original tile set to bind. They found that
by increasing n, it is possible to reduce the growth errors - or alternatively
to increase the speed of assembly while maintaining the same error rate.
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a single glue
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(c) Before the erroneously
attached tile can detach,
another tile attaches with 2
matching bonds so that all
tiles are now connected by
two correctly formed bonds

Fig. 9: Example facet error in the kTAM

For this exercise, we will construct the 2× 2 proofreading tile set for the
Sierpinski triangle (shown in its original form in Figure 7a).

4.4 Survey of kTAM results

We now provide an extremely rough overview of some of results related
to the kTAM. Note that there are several laboratory experiments which
utilize novel techniques to reduce errors in tile-based self-assembly and
to allow for the growth of larger error-free assemblies which are omitted
from this discussion.

Facet error handling In [46], the proofreading technique previously
discussed was sufficient to reduce growth errors, but was ineffective for
handling facet errors. These types of errors were more common in systems
“whose growth process[es] intrinsically involve facets”, meaning that they
frequently require growth to be initiated by extending from a flat surface.
In order to reduce these errors, the authors were able to redesign a system
used to build an n × n square by changing the pattern of growth to
one which avoids large facets. Specifically, the design used to build the
square in Figure 6 was redesigned so that, instead of using a single binary
counter growing along one side and then filler tiles which are dependent
upon facet growth, two binary counters were used used to form two sides
of the square and then filler tiles which use cooperative attachments
between those walls. These modifications (along with a few other small
changes) were able to greatly reduce the incidence of errors in the growth
of squares.

Snaked proofreading In [8], the authors demonstrated a tile set
transformation which provided improvements over the previous proof-
reading technique. In fact, their snaked proofreading technique not only
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provides substantial improvements in error correction, it also provides for
“provably good” assembly time, or specifically that it allows for close to
linear assembly time (within logarithmic factors as good as irreversible
error-free growth). Snaked proofreading relies on a block replacement
scheme similar to the proofreading of [46], but with a different internal
bond structure. An example of the difference can be seen in Figure 10.
The general technique is to force multiple insufficient attachments to
occur and be locked into place before an error can be persisted.

110 1

0

(a) A tile type
from the origi-
nal, unaltered
tile set

1T10B

1B10A
0L

10D1T

10C1B
0R

(b) The block used as
a replacement in standard
proofreading

1T10B

1B10A
0L

10D1T

10C1B
0R

(c) The block used as a re-
placement in snaked proof-
reading

Fig. 10: A comparison of the block replacement transformations used in standard
proofreading and snaked proofreading

It is also further notable that this technique was successfully imple-
mented in the laboratory [10] and the predicted theoretical improvements
in controlling facet errors were confirmed.

Self-healing The notion of self-healing, in which a growing assembly
is damaged (perhaps by the removal of a group of tiles somewhere in its
interior) but then it can correctly re-grow to “heal” the damage with-
out allowing internal errors, was first studied in [45]. The major problem
is that many computations are not reversible, but when an assembly
receives such damage it is likely to grow on all edges of the hole, and
therefore will attempt to grow “backwards” in some areas, causing non-
deterministic choices for the inputs to computational steps to frequently
result in mistakes.
In [40], it was shown that both proofreading and self-healing properties
can be incorporated into tile set transformations which make them robust
to both problems simultaneously.

Manipulating tile concentrations to improve assembly In
the basic version of the kTAM, it is assumed that not only do the
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concentrations of free tiles in solution remain constant during assem-
bly (clearly a simplifying assumption as long as new tiles are not added
to the solution), it is also assumed that tiles of all types have the same
concentration. In [3] the authors examined the effects of varying the rel-
ative concentrations of tile types in order to optimize assembly time (a
technique originally introduced in [5]) and provided an algorithm to find
the tile type concentrations which approximate the minimum expected
assembly time within a O(logn) factor. In [22] and [9] the authors stud-
ied the effects of varying concentrations on both error prevention and
assembly time and found that it is possible to improve both. In [9] they
showed that the rate of growth errors is minimized by setting the concen-
tration of tiles of type Ti proportional to the square root of the number
of times that tiles of type Ti appear in the final assembly (outside of
the seed structure). Further, by using those concentrations the expected
assembly time is also minimized for constrained systems where the size
of the growth frontier (i.e. the number of locations where a tile can at-
tach correctly and with sufficient strength) is limited to 1 at all times.
(Note that such systems, although constrained, have been shown to be
computationally universal.)

Enhanced tile design While the above (and other) work has suc-
cessfully demonstrated several techniques for reducing errors that occur
during DNA tile-based self-assembly, they have all done so without al-
lowing for the modification of the basic structures of the tiles themselves.
However, the simple and static nature of DNA tiles lends itself to the
possibility of extension.

In [30], such an extension was proposed. Namely, the authors defined a
model in which the “input” glues of tiles are “active” (that is, free to
bind to complementary glue strands) when the tiles are freely floating
in solution, but their “output” glues are “inactive” (this is, prevented
from forming bonds). Only once a tile has associated to an assembly and
bound with its input sides are its output sides activated. They presented
a theoretical model of such systems and showed that they provide in-
stances of compact (i.e. not requiring scaling factors over the original
tile set), error-resilient, and self-healing assembly systems. Furthermore,
they provided a possible physical implementation for such systems using
DNA polymerase enzymes and strand displacement.

In [20] a similar approach was taken in order to provide for both error-
resilience and fast speed of assembly. The Protected Tile Mechanism and
the Layered Tile Mechanism, which utilize stand displacement, were pre-
sented. These mechanisms make use of additional DNA strands which
“protect”, or cover, glues either partially or fully. By balancing the length
of the glue strands available for binding on input and output sides at var-
ious stages of tile binding, they were able to demonstrate - via simulation
- that these mechanisms can in fact improve error rates while maintaining
fast assembly.
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5 The 2-Handed Assembly Model (2HAM)

5.1 Informal model definition

The 2HAM [11,13] is a generalization of the aTAM in that it allows for
two assemblies, both possibly consisting of more than one tile, to attach
to each other. Since we must allow that the assemblies might require
translation before they can bind, we define a supertile to be the set of
all translations of a τ -stable assembly, and speak of the attachment of
supertiles to each other, modeling that the assemblies attach, if possible,
after appropriate translation. We now give a brief, informal, sketch of
the 2HAM.
A supertile (a.k.a., assembly) is a positioning of tiles on the integer lat-
tice Z2. Two adjacent tiles in a supertile interact if the glues on their
abutting sides are equal and have positive strength. Each supertile in-
duces a binding graph, a grid graph whose vertices are tiles, with an edge
between two tiles if they interact. The supertile is τ -stable if every cut
of its binding graph has strength at least τ , where the weight of an edge
is the strength of the glue it represents. That is, the supertile is stable if
at least energy τ is required to separate the supertile into two parts. A
2HAM tile assembly system (TAS) is a pair T = (T, τ), where T is a finite
tile set and τ is the temperature, usually 1 or 2. Given a TAS T = (T, τ),
a supertile is producible, written as α ∈ A[T ] if either it is a single tile
from T , or it is the τ -stable result of translating two producible assem-
blies without overlap.1 A supertile α is terminal, written as α ∈ A�[T ]
if for every producible supertile β, α and β cannot be τ -stably attached.
A TAS is directed if it has only one terminal, producible supertile. Given
a connected shape X ⊆ Z2, we say a TAS T self-assembles X if every
producible, terminal supertile places tiles exactly on those positions in
X (appropriately translated if necessary).

5.2 Formal model definition

We now give a much more formal definition of the 2HAM.
Two assemblies α and β are disjoint if dom α ∩ dom β = ∅. For two
assemblies α and β, define the union α∪β to be the assembly defined for
all x ∈ Z2 by (α∪β)(x) = α(x) if α(x) is defined, and (α∪β)(x) = β(x)
otherwise. Say that this union is disjoint if α and β are disjoint.
The binding graph of an assembly α is the grid graph Gα = (V,E),
where V = dom α, and {m,n} ∈ E if and only if (1) m − n ∈ U2, (2)
labelα(m) (n−m) = labelα(n) (m− n), and (3) strα(m) (n−m) > 0.
Given τ ∈ N, an assembly is τ -stable (or simply stable if τ is understood
from context), if it cannot be broken up into smaller assemblies without
breaking bonds of total strength at least τ ; i.e., if every cut of Gα has
weight at least τ , where the weight of an edge is the strength of the glue it
represents. In contrast to the model of Wang tiling, the nonnegativity of
the strength function implies that glue mismatches between adjacent tiles

1 The restriction on overlap is our formalization of the physical mechanism of steric
protection.
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do not prevent a tile from binding to an assembly, so long as sufficient
binding strength is received from the (other) sides of the tile at which
the glues match.

For assemblies α, β : Z2 99K T and u ∈ Z2, we write α+u to denote the
assembly defined for all x ∈ Z2 by (α + u)(x) = α(x − u), and write
α ' β if there exists u such that α+ u = β; i.e., if α is a translation of
β. Define the supertile of α to be the set α̃ = { β | α ' β }. A supertile
α̃ is τ -stable (or simply stable) if all of the assemblies it contains are
τ -stable; equivalently, α̃ is stable if it contains a stable assembly, since
translation preserves the property of stability. Note also that the notation
|α̃| ≡ |α| is the size of the super tile (i.e., number of tile types in the
supertile). is well-defined, since translation preserves cardinality (and
note in particular that even though we define α̃ as a set, |α̃| does not
denote the cardinality of this set, which is always ℵ0).

For two supertiles α̃ and β̃, and temperature τ ∈ N, define the combi-
nation set Cτ

α̃,β̃
to be the set of all supertiles γ̃ such that there exist

α ∈ α̃ and β ∈ β̃ such that (1) α and β are disjoint (steric protection),
(2) γ ≡ α ∪ β is τ -stable, and (3) γ ∈ γ̃. That is, Cτ

α̃,β̃
is the set of all

τ -stable supertiles that can be obtained by attaching α̃ to β̃ stably, with
|Cτ
α̃,β̃
| > 1 if there is more than one position at which β could attach

stably to α.

It is common with seeded assembly to stipulate an infinite number of
copies of each tile, but our definition allows for a finite number of tiles
as well. Our definition also allows for the growth of infinite assemblies
and finite assemblies to be captured by a single definition, similar to the
definitions of [26] for seeded assembly.

Given a set of tiles T , define a state S of T to be a multiset of supertiles,
or equivalently, S is a function mapping supertiles of T to N ∪ {∞},
indicating the multiplicity of each supertile in the state. We therefore
write α̃ ∈ S if and only if S(α̃) > 0.

A (two-handed) tile assembly system (TAS) is an ordered triple T =
(T, S, τ), where T is a finite set of tile types, S is the initial state, and
τ ∈ N is the temperature. If not stated otherwise, assume that the initial
state S is defined S(α̃) = ∞ for all supertiles α̃ such that |α̃| = 1, and
S(β̃) = 0 for all other supertiles β̃. That is, S is the state consisting of a
countably infinite number of copies of each individual tile type from T ,
and no other supertiles. In such a case we write T = (T, τ) to indicate
that T uses the default initial state.

Given a TAS T = (T, S, τ), define an assembly sequence of T to be a
sequence of states S = (Si | 0 ≤ i < k) (where k = ∞ if S is an
infinite assembly sequence), and Si+1 is constrained based on Si in the
following way: There exist supertiles α̃, β̃, γ̃ such that (1) γ̃ ∈ Cτ

α̃,β̃
,

(2) Si+1(γ̃) = Si(γ̃) + 1,2 (3) if α̃ 6= β̃, then Si+1(α̃) = Si(α̃) − 1,
Si+1(β̃) = Si(β̃) − 1, otherwise if α̃ = β̃, then Si+1(α̃) = Si(α̃) − 2,
and (4) Si+1(ω̃) = Si(ω̃) for all ω̃ 6∈ {α̃, β̃, γ̃}. That is, Si+1 is obtained
from Si by picking two supertiles from Si that can attach to each other,
and attaching them, thereby decreasing the count of the two reactant

2 with the convention that ∞ =∞+ 1 =∞− 1
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supertiles and increasing the count of the product supertile. If S0 = S,
we say that S is nascent.

Given an assembly sequence S = (Si | 0 ≤ i < k) of T = (T, S, τ) and
a supertile γ̃ ∈ Si for some i, define the predecessors of γ̃ in S to be
the multiset predS(γ̃) = {α̃, β̃} if α̃, β̃ ∈ Si−1 and α̃ and β̃ attached to
create γ̃ at step i of the assembly sequence, and define predS(γ̃) = {γ̃}
otherwise. Define the successor of γ̃ in S to be succS(γ̃) = α̃ if γ̃ is a
predecessor of α̃ in S, and define succS(γ̃) = γ̃ otherwise. A sequence of
supertiles α̃ = (α̃i | 0 ≤ i < k) is a supertile assembly sequence of T if
there is an assembly sequence S = (Si | 0 ≤ i < k) of T such that, for
all 1 ≤ i < k, succS(α̃i−1) = α̃i, and α̃ is nascent if S is nascent.

The result of a supertile assembly sequence α̃ is the unique supertile
res(α̃) such that there exist an assembly α ∈ res(α̃) and, for each 0 ≤
i < k, assemblies αi ∈ α̃i such that dom α =

⋃
0≤i<k dom αi and, for

each 0 ≤ i < k, αi v α. For all supertiles α̃, β̃, we write α̃ →T β̃
(or α̃ → β̃ when T is clear from context) to denote that there is a
supertile assembly sequence α̃ = (α̃i | 0 ≤ i < k) such that α̃0 = α̃
and res(α̃) = β̃. It can be shown using the techniques of [37] for seeded
systems that for all two-handed tile assembly systems T supplying an
infinite number of each tile type, →T is a transitive, reflexive relation
on supertiles of T . We write α̃ →1

T β̃ (α̃ →1 β̃) to denote an assembly
sequence of length 1 from α̃ to β̃ and α̃ →≤1

T β̃ (α̃ →≤1 β̃) to denote
an assembly sequence of length 1 from α̃ to β̃ if α̃ 6= β̃ and an assembly
sequence of length 0 otherwise.

A supertile α̃ is producible, and we write α̃ ∈ A[T ], if it is the result
of a nascent supertile assembly sequence. A supertile α̃ is terminal if,
for all producible supertiles β̃, Cτ

α̃,β̃
= ∅.3 Define A�[T ] ⊆ A[T ] to be

the set of terminal and producible supertiles of T . T is directed (a.k.a.,
deterministic, confluent) if |A�[T ]| = 1.

Let X ⊆ Z2 be a shape. We say X self-assembles in T if, for each
α̃ ∈ A�[T ], there exists α ∈ α̃ such that dom α = X; i.e., T uniquely
assembles into the shape X.

5.3 Examples and exercises

In this section we provide an example of a simple 2HAM system and
show exactly what assemblies are producible within it, and then give an
exercise for developing a 2HAM system.

3 Note that a supertile α̃ could be non-terminal in the sense that there is a producible
supertile β̃ such that Cτ

α̃,β̃
6= ∅, yet it may not be possible to produce α̃ and β̃

simultaneously if some tile types are given finite initial counts, implying that α̃
cannot be “grown” despite being non-terminal. If the count of each tile type in the
initial state is ∞, then all producible supertiles are producible from any state, and
the concept of terminal becomes synonymous with “not able to grow”, since it would
always be possible to use the abundant supply of tiles to assemble β̃ alongside α̃ and
then attach them.
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An example 2HAM system Let T = (T, 2) be a 2HAM system
where T is defined as the tile types in Figure 11a. Figures 11a-12c show
the complete set of 29 supertiles which make up A[T ], and Figure 12c
shows the single member of A�[T ]. The producible supertiles are broken
into groups to show the earliest step of combinations during which they
can appear, although for some there are multiple paths of combinations
which can form them. (We don’t show duplicate copies.) Furthermore,
recall from the definition of the model that all producible supertiles are
available at every step, so for example a supertile produced in step 2 may
combine with one produced in step 1 to create a new supertile in step 3.
Also note that the use of “steps” is merely a convenience for discussing
this example, but typically the sets A[T ] and A�[T ] are simply defined
as those supertiles producible in the limit.
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(b) The new supertiles producible af-
ter one step of combinations

Fig. 11: An example 2HAM system and some producible assemblies

Building frames Define a frame as a hollow m × n rectangle where
m,n > 2, i.e. a rectangle with both dimensions at least size 3 and tiles
only on its perimeter. (See Figure 13 for an example.) Create a tile set
T such that T = (T, 2) and A�[T ] is exactly the infinite set of frames.

5.4 Survey of 2HAM results

We now provide a brief, incomplete sketch of some results in the 2HAM.

Simulation of the aTAM The aTAM assumes a controlled, well-
defined origin for the initiation of all assemblies, while the 2HAM allows
for “spontaneous” nucleation caused by any two producible assemblies
(including singleton tiles) which can bind with sufficient strength. Given
this much greater level of freedom, the question of whether or not that
could be constrained and forced to behave in a way similar to the aTAM
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Fig. 12: Continuation of the example 2HAM system’s producible assemblies

Fig. 13: An example 5 × 4 frame

was asked in [6]. The answer was “yes”, and in fact in [6] a construction
was presented which, given an arbitrary aTAM system T , provides for
a way to construct a 2HAM system S which can faithfully simulate T .
The cost is a mere constant scaling factor of 5. The general technique is
to allow S to form 5 × 5 blocks which represent the tiles in T but in a
very constrained way so that the blocks can only fully form and present
their output glues once they’ve attached to a growing assembly which
contains a seed block (and therefore they can’t spontaneously combine
away from the “seeded” assembly).

Verification problems Given that the 2HAM allows for a greater
variety of behaviors than the aTAM, and in fact in some sense for the
transmission of information over arbitrary distances (by the placements
of glues and general geometric shapes of arbitrarily large supertiles which
are combining), it shouldn’t be surprising that several “verification prob-
lems” (answering the question of whether or not a given system has a
specific property) are more difficult for the 2HAM. Several verification
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problems have been characterized in terms of their complexity, some of
which include:
1. Does 2HAM system T uniquely produce a given assembly? This was

shown to be co-NP-complete for 3D temperature 2 systems in the
2HAM in [6]. (But note that it is solvable in polynomial time in the
aTAM under the same parameters!)

2. Does 2HAM system T uniquely produce a given shape? This was
shown to be in co-NP for temperature 1 and co-NP-complete for
temperature 2 in [4].

3. Is a given assembly terminal in 2HAM system T ? In [6] this was
shown to be uncomputable for temperature 2 systems in the 2HAM
(while it is computable in polynomial time in the aTAM [3], and also
for the 2HAM at temperature 1 [6].)

4. Given a 2HAM system T , does it produce a finite terminal assembly?
This was shown to be uncomputable in [6].

5. Given a 2HAM system T , does it produce an infinite terminal assem-
bly? This was shown to be uncomputable for temperature 2 2HAM
systems in [6].

Impossibility and efficiency comparisons with the aTAM
Given that the 2HAM can simulate the aTAM (and that the converse
is not true), it is somewhat surprising that in [6] it was shown that
there is a simple class of shapes (so-called loops) which can be assembled
with slightly greater tile type efficiency in the aTAM at temperature 1
than in the 2HAM at temperature 1. (However, this separation disap-
pears at temperature 2.) Nonetheless, in [6] it was also shown that there
are shapes called staircases which can self-assemble in the 2HAM using
roughly n tile types, while the aTAM requires a number exponential in
n (and this can in fact be extended to the busy beaver function, BB(n)).
In terms of impossibility, it was shown that there is a class of infinite
shapes which self-assembles in the aTAM but not the 2HAM, and also a
class of shapes shape which can self-assemble (in a weaker sense) in the
2HAM but not in the aTAM.

Speed of assembly Since the 2HAM allows for assemblies to begin
forming in parallel and then to combine in pairs, it would seem that per-
haps this would allow for sublinear assembly times. However, in [7] they
developed a physically realistic timing model for the 2HAM (referred to
there as the Hierarchical aTAM ) and showed that it is impossible to
build shapes of diameter n in time less than Ω(n) in deterministic sys-
tems. However, they then exhibited a nondeterministic system which can
assemble an n×n′ rectangle (where n > n′) in time O(n4/5 logn), break-
ing the linear-time lower bound (which applies not only to deterministic
2HAM systems, but also to seeded aTAM systems).

6 Newer Models

In this section, we provide extremely high-level descriptions of a variety
of newer models that have been derived from the TAM.
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6.1 Temperature programming

In the standard aTAM, the “program” that is being executed during
self-assembly can be thought of as being specified by the specific tile
types of the system. It is the information encoded in the glues that
direct the behavior of the system and guide assembly. Introduced in
[4], the multiple temperature model, or temperature programming, is a
variant of the seeded aTAM which allows for the temperature of the
system to be changed (raised or lowered) during the assembly process
and at well defined points. More specifically, a series of temperature
transitions, along with the tile set, seed, and initial temperature, are
specified. Assembly progresses from the seed until it is terminal. At that
point, the first temperature transition is made and assembly continues
until it is terminal. If another temperature transition has been specified
it is made and assembly once again continues, and so on until assembly is
terminal and no additional temperature transitions have been specified.
The addition of a series of temperature transitions as input turns out to
be a powerful tool, and, among other results for this model, in [42] it was
shown that there exist systems using one of two constant tile sets that
can self-assemble scaled-up versions of arbitrary shapes. One system uses
a larger scaling factor dependent upon the shape but a “Kolmogorov-
optimum” temperature sequence, while the other uses a small, constant
scaling factor but a temperature sequence proportional to the number of
points in the shape. In [42] it was also shown that there exists no single
tile set which can self-assemble an arbitrary shape in this model without
scaling.

6.2 Concentration programming

Somewhat akin to the multiple temperature model, tile concentration
programming, introduced in [5], allows for the inclusion of additional
information as input to a tile assembly system. In this model, that in-
formation is provided as the relative concentrations of the various tile
types. As mentioned in 4.4, this tool has been used for reducing both
assembly time and the frequency of errors in the kTAM. It has also been
used in a variant of the aTAM to provide nondeterministic “competi-
tions” between tiles of different types for binding at specified locations.
The results of these competitions can be used by the system to sample
the relative concentrations of the tile types and thus “read” the input
information that provides. In a series of results from [5] to [23] to [15], it
was shown how to use this information to build shapes such as squares.
Most recently, in [15] it was shown how to combine tile concentration
programming with a constant tile set to form any n×n square with high
probability (for sufficiently large n), and also how to self-assemble arbi-
trary scaled shapes using a constant tile set and tile type concentrations
dependent upon the definition of the shape.

6.3 Repulsive glues

In the aTAM, all pairs of glues interact with either a positive (i.e. at-
tractive) force when the glues match, or no force at all when the glues
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do not match. However, in natural systems there is also another option:
a negative (i.e. repulsive) force. For instance, two objects with the same
electric charge (or two magnets of opposite orientation) will repel each
other. Several variations of models allowing so-called negative glues have
been defined, along with a series of related results. See [16, 33, 36] for
examples.

6.4 Staged self-assembly

Self-assembly in the aTAM is considered a “one pot” reaction, meaning
that all assembly for a given system occurs in one test tube. Furthermore,
during the entire assembly process all tile types are present. In [13] the
authors defined a model in which different subsets of tile types and cur-
rently produced assemblies can be placed into distinct test tubes, or
bins, for portions of the assembly process. Once each bin has reached
a terminal state, it is possible to combine or separate the contents of
bins and individual tile types into new bins, and perform the next stage
of assembly. This increases the resources required for a self-assembling
system, but provides additional input in the form of the staging algo-
rithm (the definition of the series of stages) and dramatically increases
in the power of such systems. For instance, in [13] they were able to
demonstrate that a constant tile set can be used to self-assemble arbi-
trary shapes - with no scaling! This construction requires a number of
bins and stages dependent on the particular shape, and they presented
a variety of constructions which exhibited tradeoffs between the number
of tile types, number of bins, number of stages, and scaling factor.

Staged assembly with RNase As an extension to staged self-
assembly 6.4, in [1] they introduced the ability to create tile types out of
two different materials (e.g. DNA and RNA) and then to allow for the
dissolution of one type (e.g. RNA tiles) at specified points during the
assembly by the addition of an enzyme (e.g. an RNase enzyme). This
additional power allowed them to perform replication of input shapes. In
further work, in [14] it was shown how to self-assemble arbitrary shapes
using an asymptotically optimal number of tile types, a scaling factor
related to the log of the shape’s size, and a constant number of stages.

6.5 Geometrically complex tiles

Work in the aTAM is generally done with the assumption of a “diagonal”
glue function, which means that the function that maps the strength of
interaction between pairs of glues returns a 0 for all pairs of glues where
both are not the same glue type, and a positive number for pairs of glues
of matching type. Given such a glue function, which is the standard,
as previously mentioned the lower bound on the unique number of tile

types which can self-assemble an n× n square is O
(

logn
log logn

)
. However,

for a non-diagonal glue function, which is one that allows interactions
between each glue type and any subset of other glue types, that lower
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bound falls to
√

logn. In order to provide a potentially realistic means of
implementing non-diagonal glue functions, the Geometric Tile Assembly
Model (GTAM) was introduced in [19], and a series of constructions in
the GTAM were presented which: 1. self-assemble an n × n square in
the optimal O(

√
logn) tile types and at temperature 1, 2. simulate a

computationally universal class of temperature 2 aTAM constructions at
temperature 1, and 3. in a 2-handed version of the GTAM and allowing
4 planes to be used in the third dimension, self-assembles an n×n square
using only O(log(logn)) tile types.

6.6 Signal passing tiles

In the previously discussed models (other than those in Section 4.4), the
tiles are static objects which do not change in structure or function upon
binding. To study a more “active” model, in [31] the Signal passing Tile
Assembly Model (STAM), which is based on the 2HAM, was introduced.
In the STAM, tiles are allowed to have possibly multiple glues on each
side. At any point in time each glue can be in one of three states: 1.
“latent” (inactive and has never been active), 2. “on” (active, available
to bind), and 3. “off” (has been deactivated). A tile’s glues can initially
begin as either latent or on. Only glues which are on are able to bind,
and when a glue binds it is possible for it to signal any subset of glues on
the same tile to perform one of the following transitions: 1. latent→ on,
2. latent → off, or 3. on → off. The STAM is highly asynchronous,
so there is no guarantee about when a signal will be acted upon, only
that it will happen at some point in the future. It is important to note
that each tile has a constant number of glues and thus signals that it can
initiate and react to.

Complexity analysis of STAM systems includes the maximum number
of glues that appear on the face of any tile in a given system (called the
signal complexity), and in [31] the authors demonstrated a construction
which is able to self-assemble a 1×n line with a constant number of tile
types and signal complexity O(logn). They also presented a construction
which is able to simulate a Turing machine without making a copy of
the entire row representing the tape at each step, but which instead uses
only a constant number of new tiles per step. Their final construction is
the first known of any model which can strictly self-assemble a discrete
self-similar fractal, namely the Sierpinski triangle (which is provably im-
possible in models such as the aTAM and 2HAM).
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