
* This research was supported in part by National Science Foundation Grant CCF-1117672.

Tile Assembly System
A software package for Tile-Based Algorithmic Self-Assembly*

Tyler Fochtman
Department of Computer Science

University of Arkansas
Fayetteville, Arkansas
tfochtma@uark.edu

Matthew Patitz
Department of Computer Science

University of Arkansas
Fayetteville, Arkansas

patitz@uark.edu

I. INTRODUCTION

Tile Assembly System (TAS) is a free, open-source, and
cross-platform application that enables research and
education in the field of tile-based algorithmic self-assembly
through a full development and simulation environment for
the abstract Tile Assembly Model (aTAM), the kinetic Tile
Assembly Model (kTAM), and the 2-Handed Assembly
Model (2HAM) [1]. There is also a developed wiki site page,
selfassembly.net, which has information on algorithmic self-
assembly as well as tutorials for TAS [2].

II. OVERVIEW OF DEMONSTRATION

Using TAS, this demonstration will provide a basic
introduction to the three most widely used models of tile-
based self-assembly: the abstract Tile Assembly Model
(aTAM), the kinetic Tile Assembly Model (kTAM), and the
two-handed Tile Assembly Model (2HAM). Each model
provides a defined process by which sets of relatively simple
objects (e.g. tiles) can autonomously combine into structures
of greater complexity, i.e. self-assemble. The general purpose
of the aTAM is to provide a framework which can be used to
discover the mathematical properties of tile-assembly. The
kTAM builds upon the aTAM and provides an accurate
model by which the nuances of chemical kinetics and
probabilistic assembly (including errors) come to bear on
what is feasible to self-assemble, and as such has helped
guide laboratory experiments as well as predict results. The
2HAM is like the aTAM in that it ignores kinetics, however,
each iteration of a 2HAM simulation produces new sets of
self-fabricated supertiles that potentially become
substructures of the next generation of supertiles, thus
allowing arbitrarily large assemblies to combine in pairs.

Within the demonstration, the unique properties of each
model will be exhibited by tile-based counters, i.e. algorithmic
assembly systems which inherently execute binary counting.
The assembly of predefined tile-based structures and patterns
are as reliant on measurement as is the construction of a brick
and mortar building. The challenge of constructing objects at
the nanometer scale is that we can’t explicitly move the
materials where we want them. Instead, we must
algorithmically guide the placement of materials through the
self-assembly of modules such as counters. Counters can then
act as scaffolding from which other portions of the structure

can be assembled. This demonstration will provide examples
of counters in the aTAM, kTAM and 2HAM.

III. ABOUT TAS
In 2009 Dr. Matthew Patitz released the first version of

TAS. Since 2009 TAS has maintained its relevance as a
research tool through consistent upgrades and refactoring of
the underlying codebase. TAS is a free application released
under the GNU GPL license. The source code for TAS is
available for download and is written in C++. TAS is also a
cross-platform application that operates on Windows, Linux
and OS X.

The user-friendly GUI allows veterans in the area of
research to quickly develop tile sets, but is also intuitive
enough for newcomers to grasp. There are three main
windows available to the user: the simulation space, the tile-
set editor, and the overview window. The simulation space
changes depending on which mode (aTAM, kTAM, or
2HAM) the application is in, presenting options specific to
each model. The tile-set editor window facilitates designing,
building, and editing tiles. Within this window the user can
define new tiles based on the respective edge glue strength
and edge label. Users can also color specific tiles to draw
out patterns of the tile-assembly. The overview window is a
small window that allows for quick navigation of large tile
assemblies.
 Each simulation mode has unique configuration options
built into the GUI that allow TAS users to dynamically
manipulate and glean insight from the simulation space. For
example, simulations are cached and can be rewound for
inspection, and while in the 2HAM simulation mode the
number of supertiles for each tile count are kept in a list and
this list is updated with each iteration. Also in the 2HAM, the
user is able to filter the viewable set of supertiles based on
size parameters. For example if the user is only interested in
studying a range of tiles, they may exclude all but this range
from view within the simulation space. Another important
2HAM feature is the ability to permanently remove subsets
of tiles from the simulation space.
 For researches and experienced users of TAS there are
several notable features of the application. TAS has the ability
to automate the simulation of tile assemblies through the
Batch processing mode. In Batch mode the user can run an
arbitrary number of simulations and save desired

2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops

978-1-4799-5086-7/13 $31.00 © 2013 IEEE

DOI 10.1109/SASOW.2013.29

27

characteristics of those runs to a file for analysis. TAS can
work with any tile-set size that the underlying computer
hardware can handle, and has been optimized to make even
large simulations over very large tile sets feasible and fast.
Additionally, while TAS has its own simple and well
documented file format for defining tile assembly systems (to
facilitate external, programmatic generation of system
definitions), it is also able to utilize systems defined for the
other well-known simulator, xgrow.

REFERENCES

[1] M. Patitz, “An Introduction to Tile-Based Self-Assembly and a Survery
of Recent Results”, Natural Computing, to appear.

[2] Tutorials and Video Demonstration of TAS:
 selfassembly.net/wiki/index.php?title=ISU_TAS_Tutorials

28

